Wang Yuanchao
Nanjing Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wang Yuanchao.
Chinese Science Bulletin | 2006
Wang Xueqing; Jiang Jin; Wang Yuanchao; Luo Weilin; Song Chunwu; Chen Junjie
Ephemeral plants in the southern part of Gurbantunggut Desert were systematically monitored from 2002 to 2004 and the meteorological data and soil moisture during the same period were analyzed. The results show that the ephemeral plants germination and growth are sensitive to the changes of water and heat condition. The time for daily temperature over 0°C in early spring in 2003 was delayed nearly 10 d compared with that in 2002, while the soil water changed little in the same period. Observation showed that there were 28 ephemeral species germinated in 2002, their life period was about 70 d in spring, and the maximum cover of ephemeral synusia reached 46.4%. However, only 17 ephemeral species germinated in 2003, their life period was about 50 d in spring, and their maximum cover was only 20.8%. The height of ephemeral plants was significantly higher in 2002 than that in 2003. It can be seen that ephemeral plant germination and growth in spring are strongly dependent on temperature. The changes of water conditions can affect ephemerals germination and growth as well. Because no heavy precipitation occurred during summer in 2002, only a few ephemerophytes were observed in autumn after ephemerals completed their life circle in early spring. However, about 60 mm precipitation was recorded from July to August both in 2003 and in 2004. Some ephemerals such as Erodium oxyrrhynchum and Carex physodes, etc. covered the dune surface rapidly with a cover >10%. Therefore, the ephemerals not only germinate in autumn after the early spring, some species may germinate in summer if adequate rainfall occurs. The study on responses of ephemerals growth to water and heat conditions not only has a certain ecological significance but also contributes a better understanding to the effect of climate changes on the desert surface stability.
Plant Cell Reports | 2008
Dong Suomeng; Zhang Zhengguang; Zheng Xiaobo; Wang Yuanchao
Emerging evidence suggests that plants and animals may share certain biochemical commonalities in apoptosis, or programmed cell death (PCD) pathways, though plants lack key animal apoptosis related genes. In plants, PCD has many important functions including a role in immunity and resistance to pathogen infection. In this study, a rice phenylalanine ammonia-lyase promoter is used to regulate the expression of the mouse pro-apoptotic bax gene in transgenic tobacco plants. Ectopic expression of the bax negatively affects the growth of transgenic plants. Nonetheless, results show that the bax transgene is induced upon infection by plant pathogens and accumulation of Bax is observed by Western blot analysis. By estimating and measuring the extent of cell death, release of active oxygen species, and accumulation defense-associated gene transcripts, it is shown that bax transgenic plants mount a more robust cell death response compared to control plants. The bax transgenic tobacco plants are also more resistant to infection by Phytophthoraparasitica and Ralstoniasolanacearum, but have no obvious resistance to tobacco mosaic virus. These results substantiate past studies and illustrate the powerful effects mammalian bax genes may have on plant development and disease resistance.Emerging evidence suggests that plants and animals may share certain biochemical commonalities in apoptosis, or programmed cell death (PCD) pathways, though plants lack key animal apoptosis related genes. In plants, PCD has many important functions including a role in immunity and resistance to pathogen infection. In this study, a rice phenylalanine ammonia-lyase promoter is used to regulate the expression of the mouse pro-apoptotic bax gene in transgenic tobacco plants. Ectopic expression of the bax negatively affects the growth of transgenic plants. Nonetheless, results show that the bax transgene is induced upon infection by plant pathogens and accumulation of Bax is observed by Western blot analysis. By estimating and measuring the extent of cell death, release of active oxygen species, and accumulation defense-associated gene transcripts, it is shown that bax transgenic plants mount a more robust cell death response compared to control plants. The bax transgenic tobacco plants are also more resistant to infection by Phytophthora parasitica and Ralstonia solanacearum, but have no obvious resistance to tobacco mosaic virus. These results substantiate past studies and illustrate the powerful effects mammalian bax genes may have on plant development and disease resistance.
Chinese Science Bulletin | 2006
Zeng Juan; Wang Yuanchao; Shen Gui; Zheng Xiaobo
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein well defined in eukaryotes, especially in mammalian and Saccharomyces cerevisiae. Using the method of suppression subtractive hybridization (SSH), we identified a Phytophthora sojae cDNA coding GAPDH, which was up-regulated during the early stage of soybean infection. The termed PsGapdh gene possessed three copies in the P. sojae genome. Its amino acid sequence harbored overall conserved domain of GADPH, homologous closest to GapC1 of Achlya bisexualis (oomycete) and adjoined to GapC2s of Odontella sinensis and Phaeodactylum tricornutum (diatom), on the C-II branch of subfamily GapC in phylogeny tree of GAPDH. The transcriptional level of PsGapdh was up-regulated throughout early infection. Heterogenous expression of PsGapdh in the yeast tdh1-deleted mutant could rescue growth arrest under continuous exposure to H2O2. These results indicated active roles of PsGapdh in pathogen-host interaction and anti-oxidation.
Acta Phytopathologica Sinica | 2004
Chen Qinghe; Weng Qiyong; Wang Yuanchao; Zheng Xiao-bo
Archive | 2003
Wang Yuanchao; Zheng Xiaobo; Wang Li An
Archive | 2013
Wang Yuanchao; Dai Tingting; Dong Shameng; Zheng Xiaobo
Chinese Science Bulletin | 2006
Wang Ziying; Wang Yuanchao; Zhang Zhenggung; Zheng Xiaobuo
Archive | 2004
Wang Yuanchao; Zheng Xiaobo; Zheng Yanmei
Archive | 2013
Zheng Xiaobo; Lu Chenchen; Dai Tingting; Wang Yuanchao; Zhang Haifeng
Archive | 2013
Dong Shameng; Wang Yuanchao; Zhang Zhengguang; Zheng Xiaobo