Wangdong Zeng
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wangdong Zeng.
Journal of the American Chemical Society | 2012
Zebing Zeng; Young Mo Sung; Nina Bao; Davin Tan; Richmond Lee; José L. Zafra; Byung Sun Lee; Masatoshi Ishida; Jun Ding; Juan T. López Navarrete; Yuan Li; Wangdong Zeng; Dongho Kim; Kuo-Wei Huang; Richard D. Webster; Juan Casado; Jishan Wu
Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabins hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabins hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl(3) and/or concentrated H(2)SO(4). The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm).
Journal of the American Chemical Society | 2013
Zebing Zeng; Masatoshi Ishida; José L. Zafra; Xiaojian Zhu; Young Mo Sung; Nina Bao; Richard D. Webster; Byung Sun Lee; Run-Wei Li; Wangdong Zeng; Yuan Li; Chunyan Chi; Juan T. López Navarrete; Jun Ding; Juan Casado; Dongho Kim; Jishan Wu
p-Quinodimethane (p-QDM) is a fundamental building block for the design of π-conjugated systems with low band gap and open-shell biradical character. However, synthesis of extended p-QDMs has usually suffered from their intrinsic high reactivity and poor solubility. In this work, benzannulation together with terminal cyano-substitution was demonstrated to be an efficient approach for the synthesis of a series of soluble and stable tetracyano-oligo(N-annulated perylene)quinodimethanes nPer-CN (n = 1-6), with the longest molecule having 12 para-linked benzenoid rings! The geometry and electronic structures of these oligomers were investigated by steady-state and transient absorption spectroscopy, nuclear magnetic resonance, electron spin resonance, superconducting quantum interference device, and FT Raman spectroscopy assisted by density functional theory calculations. They showed tunable ground states, varying from a closed-shell quinoidal structure for monomer, to a singlet biradical for dimer, trimer, and tetramer, and to a triplet biradical for pentamer and hexamer. Large two-photon absorption cross-section values were observed in the near-infrared range, which also exhibited a clear chain-length dependence.
Chemistry: A European Journal | 2014
Soumyajit Das; Sangsu Lee; Minjung Son; Xiaojian Zhu; Wen-Hua Zhang; Bin Zheng; Pan Hu; Zebing Zeng; Zhe Sun; Wangdong Zeng; Run-Wei Li; Kuo-Wei Huang; Jun Ding; Dongho Kim; Jishan Wu
Polycyclic hydrocarbon compounds with a singlet biradical ground state show unique physical properties and promising material applications; therefore, it is important to understand the fundamental structure/biradical character/physical properties relationships. In this study, para-quinodimethane (p-QDM)-bridged quinoidal perylene dimers 4 and 5 with different fusion modes and their corresponding aromatic counterparts, the pericondensed quaterrylenes 6 and 7, were synthesized. Their ground-state electronic structures and physical properties were studied by using various experiments assisted with DFT calculations. The proaromatic p-QDM-bridged perylene monoimide dimer 4 has a singlet biradical ground state with a small singlet/triplet energy gap (-2.97 kcal mol(-1)), whereas the antiaromatic s-indacene-bridged N-annulated perylene dimer 5 exists as a closed-shell quinoid with an obvious intramolecular charge-transfer character. Both of these dimers showed shorter singlet excited-state lifetimes, larger two-photon-absorption cross sections, and smaller energy gaps than the corresponding aromatic quaterrylene derivatives 6 and 7, respectively. Our studies revealed how the fusion mode and aromaticity affect the ground state and, consequently, the photophysical properties and electronic properties of a series of extended polycyclic hydrocarbon compounds.
Organic Letters | 2015
Qingbiao Qi; Xingzhu Wang; Li Fan; Bin Zheng; Wangdong Zeng; Jie Luo; Kuo-Wei Huang; Qing Wang; Jishan Wu
Alkoxy-wrapped N-annulated perylene (NP) was synthesized and used as a rigid and coplanar π-linker for three push-pull type metal-free sensitizers QB1-QB3. Their optical and electrochemical properties were tuned by varying the structure of acceptor. These new dyes were applied in Co(II)/(III) based dye-sensitized solar cells, and power conversion efficiency up to 6.95% was achieved, indicating that NP could be used as a new building block for the design of high-performance sensitizers in the future.
Journal of the American Chemical Society | 2016
Rui Huang; Hoa Phan; Tun Seng Herng; Pan Hu; Wangdong Zeng; Shaoqiang Dong; Soumyajit Das; Yongjia Shen; Jun Ding; David Casanova; Jishan Wu
Higher order acenes (i.e., acenes longer than pentacene) and extended zethrenes (i.e., zethrenes longer than zethrene) are theoretically predicted to have an open-shell singlet ground state, and the radical character is supposed to increase with extension of molecular size. The increasing radical character makes the synthesis of long zethrenes and acenes very challenging, and so far, the longest reported zethrene and acene derivatives are octazethrene and nonacene, respectively. In addition, there is a lack of fundamental understanding of the differences between these two closely related open-shell singlet systems. In this work, we report the first synthesis of a challenging nonazethrene derivative, HR-NZ, and its full structural and physical characterizations including variable temperature NMR, ESR, SQUID, UV-vis-NIR absorption and electrochemical measurements. Compound HR-NZ has an open-shell singlet ground state with a moderate diradical character (y0 = 0.48 based on UCAM-B3LYP calculation) and a small singlet-triplet gap (ΔES-T = -5.2 kcal/mol based on SQUID data), thus showing magnetic activity at room temperature. It also shows amphoteric redox behavior, with a small electrochemical energy gap (1.33 eV). Its electronic structure and physical properties are compared with those of Anthonys nonacene derivative JA-NA and other zethrene derivatives. A more general comparison between higher order acenes and extended zethrenes was also conducted on the basis of ab initio electronic structure calculations, and it was found that zethrenes and acenes have very different spatial localization of the unpaired electrons. As a result, a faster decrease of singlet-triplet energy gap and a faster increase of radical character with increase of the number of benzenoid rings were observed in zethrene series. Our studies reveal that spatial localization of the frontier molecular orbitals play a very important role on the nature of radical character as well as the excitation energy.
Chemical Science | 2014
Yuan Li; Kuo-Wei Huang; Zhe Sun; Richard D. Webster; Zebing Zeng; Wangdong Zeng; Chunyan Chi; Ko Furukawa; Jishan Wu
The synthesis of high-spin polycyclic hydrocarbons is very challenging due to their extremely high reactivity. Herein, we report the synthesis and characterization of a kinetically blocked 1,14:11,12-dibenzopentacene, DP-Mes, which represents a rare persistent triplet diradical of a non-Kekule polycyclic benzenoid hydrocarbon. In contrast to its structural isomer 1,14:7,8-dibenzopentacene (heptazethrene) with a singlet biradical ground state, DP-Mes is a triplet diradical as confirmed by ESR and ESTN measurements and density functional theory calculations. DP-Mes also displays intermolecular antiferromagnetic spin interactions in solution at low temperature.
Chemistry: A European Journal | 2013
Wangdong Zeng; Masatoshi Ishida; Sangsu Lee; Young Mo Sung; Zebing Zeng; Yong Ni; Chunyan Chi; Dongho Kim; Jishan Wu
A p-quinodimethane (p-QDM)-bridged porphyrin dimer 1 has been prepared for the first time. An unexpected Michael addition reaction took place when we attempted to synthesize compound 1 by reaction of the cross-conjugated keto-linked porphyrin dimers 8a and 8b with alkynyl/aryl Grignard reagents. Alternatively, compound 1 could be successfully prepared by intramolecular Friedel-Crafts alkylation of the diol-linked porphyrin dimer 14 with concomitant oxidation in air. Compound 1 shows intense one-photon absorption (OPA, λ(max)=955 nm, ε=45400 M(-1) cm(-1)) and a large two-photon absorption (TPA) cross-section (σ((2))(max)=2080 GM at 1800 nm) in the near-infrared (NIR) region due to its extended π-conjugation and quinoidal character. It also exhibits a short singlet excited-state lifetime of 25 ps. The cyclic voltammogram of 1 displays multiple redox waves with a small electrochemical energy gap of 0.86 eV. The ground-state geometry, electronic structure, and optical properties of 1 have been further studied by density functional theory (DFT) calculations and compared with those of the keto-linked dimer 8b. This research has revealed that incorporation of a p-QDM unit into the porphyrin framework had a significant impact on its optical and electronic properties, leading to a novel NIR OPA and TPA chromophore.
Chemical Science | 2014
Ding Luo; Sangsu Lee; Bin Zheng; Zhe Sun; Wangdong Zeng; Kuo-Wei Huang; Ko Furukawa; Dongho Kim; Richard D. Webster; Jishan Wu
Polycyclic hydrocarbons (PHs) with a singlet biradical ground state have recently attracted extensive interest in physical organic chemistry and materials science. Replacing the carbon radical center in the open-shell PHs with a more electronegative nitrogen atom is expected to result in the more stable aminyl radical. In this work, two kinetically blocked stable/persistent derivatives (1 and 2) of indolo[2,3-b]carbazole, an isoelectronic structure of the known indeno[2,1-b]fluorene, were synthesized and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate biradical character (y0 = 0.269) and a small singlet–triplet energy gap (ΔES–T ≅ −1.78 kcal mol−1), while the more extended dibenzo-indolo[2,3-b]carbazole 2 exhibits a quinoidal closed-shell ground state. The difference can be explained by considering the number of aromatic sextet rings gained from the closed-shell to the open-shell biradical resonance form, that is to say, two for compound 1 and one for compound 2, which determines their different biradical characters. The optical and electronic properties of 2 and the corresponding aromatic precursors were investigated by one-photon absorption, transient absorption and two-photon absorption (TPA) spectroscopies and electrochemistry. Amphoteric redox behaviour, a short excited lifetime and a moderate TPA cross section were observed for 2, which can be correlated to its antiaromaticity and small biradical character. Compound 2 showed high reactivity to protic solvents due to its extremely low-lying LUMO energy level. Unusual oxidative dimerization was also observed for the unblocked dihydro-indolo[2,3-b]carbazole precursors 6 and 11. Our studies shed light on the rational design of persistent aminyl biradicals with tunable properties in the future.
Journal of the American Chemical Society | 2017
Xuefeng Lu; Sangsu Lee; Yongseok Hong; Hoa Phan; Tullimilli Y. Gopalakrishna; Tun Seng Herng; Takayuki Tanaka; María Eugenia Sandoval-Salinas; Wangdong Zeng; Jun Ding; David Casanova; Atsuhiro Osuka; Dongho Kim; Jishan Wu
Synthesis of stable open-shell polyradicaloids including control of intramolecular spin-spin interactions is a challenging topic in organic chemistry and materials science. Herein, we report the synthesis and physical characterization of two series of fluorenyl based macrocyclic polyradicaloids. In one series (FR-MCn, n = 4-6), the fluorenyl radicals are directly linked at 3,6-positions; whereas in the other series (MC-FnAn, n = 3-5), an additional ethynylene moiety is inserted between the neighboring fluorenyl units. To access stable macrocyclic polyradicaloids, three synthetic methods were developed. All of these stable macrocycles can be purified by normal silica gel column chromatography under ambient conditions. In all cases, moderate polyradical characters were calculated by restricted active space spin-flip method due to the moderate intramolecular antiferromagnetic spin-spin interactions. The excitation energies from the low-spin ground state to the lowest high-spin excited state were evaluated by superconducting quantum interference device measurements. Their physical properties were also compared with the respective linear fluorenyl radical oligomers (FR-n, n = 3-6). It is found that the geometry, i.e., the distortional angle and spacer (w or w/o ethynylene) between the neighboring fluorenyl units, has significant effect on their polyradical character, excitation energy, one-photon absorption, two-photon absorption and electrochemical properties. In addition, the macrocyclic tetramers FR-MC4 and MC-F4A4 showed global antiaromatic character due to cyclic π-conjugation with 36 and 44 π-electrons, respectively.
Chemistry: A European Journal | 2015
Jie Luo; Sangsu Lee; Minjung Son; Bin Zheng; Kuo-Wei Huang; Qingbiao Qi; Wangdong Zeng; Gongqiang Li; Dongho Kim; Jishan Wu
Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1 a/1 b with very intense absorption (ε>1.3×10(5) M(-1) cm(-1)) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10(-6) and 6.0×10(-6) for 1 a and 1 b, respectively. The NP-substituted porphyrin dimers 2 a/2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.