Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wanglong Qiu is active.

Publication


Featured researches published by Wanglong Qiu.


Clinical Cancer Research | 2006

PIK3CA Mutations in Head and Neck Squamous Cell Carcinoma

Wanglong Qiu; Frank Schönleben; Xiaojun Li; Daniel J. Ho; Lanny G. Close; Spiros Manolidis; Boyce P. Bennett; Gloria H. Su

Purpose: Recent studies have reported high frequencies of somatic mutations in the phosphoinositide-3-kinase catalytic α (PIK3CA) gene in several human solid tumors. Although gene amplifications of PIK3CA have been reported in head and neck squamous cell carcinoma (HNSCC), small mutation of the gene has not been evaluated in HNSCC previously. In this study, we examined the mutation frequency of PIK3CA in HNSCC. Experimental Design: More than 75% of the somatic mutations of PIK3CA are clustered in the helical (exon 9) and kinase domains (exon 20). To investigate the possible role of PIK3CA in HNSCC tumorigenesis, exons 1, 4, 5, 6, 7, 9, and 20 of the gene were analyzed by direct genomic DNA sequencing in 38 HNSCC specimens. Results: We identified four missense mutations in the seven exons of PIK3CA from 38 HNSCC specimens (11%). Three of the four mutations (i.e., H1047R, E542K, and E545K) have been previously reported as hotspot mutations. The remaining novel mutation, Y343C, is identified at exon 4 nucleotide 1028 A → G. Three of the four mutations were shown to be somatic, whereas the fourth mutation (H1047R) was identified in a cell line. Interestingly, three of the four mutations identified were in pharyngeal cancer samples. Conclusions: These data provide evidence that oncogenic properties of PIK3CA contribute to the carcinogenesis of human head and neck cancers, especially in pharyngeal cancer. A specific kinase inhibitor to PIK3CA may potentially be an effective therapeutic reagent against HNSCC or pharyngeal cancer in particular.


Clinical Cancer Research | 2006

PIK3CA Mutations in Intraductal Papillary Mucinous Neoplasm/Carcinoma of the Pancreas

Frank Schönleben; Wanglong Qiu; Nancy T. Ciau; Daniel J. Ho; Xiaojun Li; John D. Allendorf; Helen Remotti; Gloria H. Su

Purpose: Recent studies have reported high frequencies of somatic mutations in the phosphoinositide-3-kinase catalytic-α (PIK3CA) gene in various human solid tumors. More than 75% of those somatic mutations are clustered in the helical (exon 9) and kinase domains (exon 20). The three hot-spot mutations, E542K, E545K, and H1047R, have been proven to elevate the lipid kinase activity of PIK3CA and activate the Akt signaling pathway. The mutational status of PIK3CA in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMC) has not been evaluated previously. Experimental Design: To evaluate a possible role for PIK3CA in the tumorigenesis of IPMN and IPMC, exons 1, 4, 5, 6, 7, 9, 12, 18, and 20 were analyzed in 36 IPMN/IPMC and two mucinous cystadenoma specimens by direct genomic DNA sequencing. Results: We identified four missense mutations in the nine screened exons of PIK3CA from 36 IPMN/IPMC specimens (11%). One of the four mutations, H1047R, has been previously reported as a hot-spot mutation. The remaining three mutations, T324I, W551G, and S1015F, were novel and somatic. Conclusion: This is the first report of PIK3CA mutation in pancreatic cancer. Our data provide evidence that the oncogenic properties of PIK3CA contribute to the tumorigenesis of IPMN/IPMC.


Clinical Cancer Research | 2004

MAP2K4/MKK4 expression in pancreatic cancer: Genetic validation of immunohistochemistry and relationship to disease course

Wei Xin; Ki Jung Yun; Francesca Ricci; Marianna Zahurak; Wanglong Qiu; Gloria H. Su; Charles J. Yeo; Ralph H. Hruban; Scott E. Kern; Christine A. Iacobuzio-Donahue

MKK4 (MAP2K4/SEK1) is a member of the mitogen-activated protein kinase family, originally identified as a kinase involved in the stress-activated protein kinase pathway by directly phosphorylating c-Jun NH2-terminal kinase. MKK4 genetic inactivation has been observed in a subset of pancreatic carcinomas, implicating deregulation of the stress-activated protein kinase pathway in pancreatic carcinogenesis. We evaluated Mkk4 protein expression patterns by immunohistochemical labeling in a series of 60 resected primary infiltrating pancreatic adenocarcinomas (24 cases with known MKK4 genetic status), and 14 different tissue arrays representing the primary carcinoma and all of the gross metastases from 26 patients that died of metastatic pancreatic cancer. Among the surgically resected carcinomas, focal or diffuse-positive immunolabeling for Mkk4 protein was found in 52 of 60 cases (86.7%). Among the eight carcinomas with negative Mkk4 immunolabeling, three harbored a homozygous deletion or intragenic mutation of the MKK4 gene, in contrast to none of the 52 cases with positive Mkk4 immunolabeling (P < 0.01). Loss of Mkk4 immunolabeling showed a trend toward shorter survival, with Mkk4-positive carcinomas having half the risk of death than Mkk4-negative carcinomas (P = 0.09). Mkk4 immunolabeling patterns were also evaluated among unresectable primary and metastatic cancer tissues from autopsy specimens, indicating intact Mkk4 immunolabeling in 88.8% of the unresectable primary carcinomas as compared with 63.3% of distant metastases (P < 0.001). Our data indicate that the loss of Mkk4 protein expression in pancreatic carcinomas may be more frequent than suggested by the rates of genetic inactivation alone and that MKK4 loss may contribute to disease progression. The correlation of MKK4 genetic status with immunolabeling patterns validate this approach for the evaluation of MKK4 status in routine histologic sections and may provide useful information regarding patient prognosis.


Langenbeck's Archives of Surgery | 2008

PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas

Frank Schönleben; Wanglong Qiu; Helen Remotti; Werner Hohenberger; Gloria H. Su

Background and aimsRecent studies have reported high frequencies of somatic mutations in the phosphoinositide-3-kinase catalytic-α (PIK3CA) gene in various human tumors. Three hot-spot mutations in the exons 9 and 20 have been proven to activate the Akt signalling pathway. The Raf/MEK/ERK (mitogen-activated protein kinase) signal transduction is an important mediator of a number of cellular fates including growth, proliferation, and survival. The BRAF gene is activated by oncogenic RAS, leading to cooperative effects in cells responding to growth factor signals. Here we evaluate the mutational status of PIK3CA, KRAS, and BRAF in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMNC) of the pancreas.Materials and methodsExons 1, 4, 5, 6, 7, 9, 12, 18, and 20 of PIK3CA, exons 1 of KRAS, and exons 5, 11, and 15 of BRAF were analyzed in 36 IPMN/IPMC and two mucinous cystadenoma specimens by direct genomic DNA sequencing.ResultsWe identified four somatic missense mutations of PIK3CA within the 36 IPMN/IPMC specimens (11%). One of the four mutations, H1047R, has been previously reported to be a hot-spot mutation. Furthermore, we found 17 (47%) KRAS mutations in exon 1 and one missense mutation (2.7%) in exon 15 of BRAF.ConclusionThis data is the first report of PIK3CA mutation in pancreatic cancer and it appears to be the first oncogene to be mutated in IPMN/IPMC but not in conventional ductal adenocarcinoma of the pancreas. Our data provide evidence that PIK3CA and BRAF contribute to the tumorigenesis of IPMN/IPMC, but at a lower frequency than KRAS.


Journal of Gastrointestinal Surgery | 2009

Molecular Analysis of PIK3CA, BRAF, and RAS Oncogenes in Periampullary and Ampullary Adenomas and Carcinomas

Frank Schönleben; Wanglong Qiu; John D. Allendorf; John A. Chabot; Helen Remotti; Gloria H. Su

BackgroundMutations of KRAS are known to occur in periampullary and ampullary adenomas and carcinomas. However, nothing is known about NRAS, HRAS, BRAF, and PIK3CA mutations in these tumors. While oncogenic BRAF contributes to the tumorigenesis of both pancreatic ductal adenocarcinoma and intraductal papillary mucinous neoplasms/carcinomas (IPMN/IPMC), PIK3CA mutations were only detected in IPMN/IPMC. This study aimed to elucidate possible roles of BRAF and PIK3CA in the development of ampullary and periampullary adenomas and carcinomas.MethodsMutations of BRAF, NRAS, HRAS, KRAS, and PIK3CA were evaluated in seven adenomas, seven adenomas with carcinoma in situ, and 21 adenocarcinomas of the periampullary duodenal region and the ampulla of Vater. Exons 1 of KRAS; 2 and 3 of NRAS and HRAS; 5, 11, and 15 of BRAF; and 9 and 20 of PIK3CA were examined by direct genomic sequencing.ResultsIn total, we identified ten (28.6%) KRAS mutations in exon 1 (nine in codon 12 and one in codon 13), two missense mutations of BRAF (6%), one within exon 11 (G469A), and one V600E hot spot mutation in exon 15 of BRAF. BRAF mutations were present in two of five periampullary tumors. All mutations appear to be somatic since the same alterations were not detected in the corresponding normal tissues.ConclusionOur data provide evidence that oncogenic properties of KRAS and BRAF but not NRAS, HRAS, and PIK3CA contribute to the tumorigenesis of periampullary and ampullary tumors; BRAF mutations occur more frequently in periampullary than ampullary neoplasms.


International Journal of Cancer | 2007

Novel mutant‐enriched sequencing identified high frequency of PIK3CA mutations in pharyngeal cancer

Wanglong Qiu; Guo-Xia Tong; Spiros Manolidis; Lanny G. Close; Adel Assaad; Gloria H. Su

We previously reported 4 PIK3CA mutations in 38 head and neck cancer samples, 3 of which were identified in 6 pharyngeal cancer samples. To determine the mutation frequency of PIK3CA in pharyngeal cancer, we studied 24 additional cases of pharyngeal squamous cell carcinoma in this study. Using both direct genomic DNA sequencing and novel mutant‐enriched sequencing methods developed specifically for the 3 hot‐spot mutations (H1047R, E545K and E452K) of PIK3CA, we detected 5 mutations of PIK3CA in the 24 pharyngeal cancers (20.8%). Three of the 5 mutations had been missed by the conventional sequencing method and were subsequently detected by novel mutant‐enriched sequencing methods. We showed that the mutant‐enriched sequencing method for the H1047R hot‐spot mutation can identify the mutation in a mixed population of mutant and wild‐type DNA sequences at 1:360 ratios. These novel mutant‐enriched sequencing methods allow the detection of the PIK3CA hot‐spot mutations in clinical specimens which often contain limited tumor tissues (i.e., biopsy specimens). The data further support that oncogenic PIK3CA may play a critical role in pharyngeal carcinogenesis, and the mutant‐enriched sequencing methods for PIK3CA are sensitive and reliable ways to detect PIK3CA mutations in clinical samples. Because PIK3CA and its pathway are potential targets for chemotherapy and radiation therapy, and frequent somatic mutation of PIK3CA has been identified in many human cancer types (e.g., breast cancer, colorectal cancer), the abilities to detect PIK3CA mutations with enhanced sensitivities have great potential impacts on target therapies for many cancer types.


Pancreas | 2008

Mutational analyses of multiple oncogenic pathways in intraductal papillary mucinous neoplasms of the pancreas.

Frank Schönleben; John D. Allendorf; Wanglong Qiu; Xiaojun Li; Daniel J. Ho; Nancy T. Ciau; Robert L. Fine; John A. Chabot; Helen Remotti; Gloria H. Su

Objective: There is much accumulated evidence that EGFR, HER2, and their downstream signaling pathway members such as KRAS, BRAF, and PIK3CA are strongly implicated in cancer development and progression. Recently, mutations in the kinase domains of EGFR and HER2, associated with increased sensitivity to tyrosine kinase inhibitors, have been described. Methods: To evaluate the mutational status of these genes in intraductal papillary mucinous neoplasm (IPMN)/intraductal papillary mucinous carcinoma (IPMC), EGFR and HER2 were analyzed in 36 IPMN/IPMC, and the results were correlated to the mutational status of the KRAS, BRAF, and PIK3CA genes in the samples. Results: Together, we identified 1 silent mutation of HER2, 17 (43%) KRAS mutations, 1 (2.7%) BRAF mutation, and 4 (11%) mutations of PIK3CA in the IPMN/IPMC samples. Conclusions: The EGFR and ERBB2 (HER2) mutations are very infrequent in IPMN/IPMC, suggesting the limited possibility of targeting mutated ERBB2 and EGFR for therapy for these lesions. The KRAS, BRAF, and PIK3CA, however, could represent interesting targets for future therapies in these lesions.


Journal of Investigative Dermatology | 2011

Conditional Activin Receptor Type 1B (Acvr1b) Knockout Mice Reveal Hair Loss Abnormality

Wanglong Qiu; Xiaojun Li; Hongyan Tang; Alicia S. Huang; Andrey A. Panteleyev; David M. Owens; Gloria H. Su

The in vivo functions of the activin A receptor type 1b (Acvr1b) have been difficult to study because Acvr1b(-/-) mice die during embryogenesis. To investigate the roles of Acvr1b in the epithelial tissues, we created mice with a conditional disruption of Acvr1b (Acvr1b(flox/flox)) and crossed them with K14-Cre mice. Acvr1b(flox/flox); K14-Cre mice displayed various degrees of hairlessness at postnatal day 5, and the phenotype is exacerbated by age. Histological analyses showed that those hair follicles that developed during morphogenesis were later disrupted by delays in hair cycle reentry. Failure in cycling of the hair follicles and regrowth of the hair shaft and the inner root sheath resulted in subsequent severe hair loss. Apart from previous reports of other members of the transforming growth factor-β/activin/bone morphogenic protein pathways, we demonstrate a specialized role for Acvr1b in hair cycling in addition to hair follicle development. Acvr1b(flox/flox); K14-Cre mice also had a thicker epidermis than did wild-type mice, which resulted from persistent proliferation of skin epithelial cells; however, no tumor formation was observed by 18 months of age. Our analysis of this Acvr1b knockout mouse line provides direct genetic evidence that Acvr1b signaling is required for both hair follicle development and cycling.


Oncogene | 2006

A novel mutation of STK11/LKB1 gene leads to the loss of cell growth inhibition in head and neck squamous cell carcinoma

Wanglong Qiu; Frank Schönleben; Harshwardhan Thaker; Michael Goggins; H Gloria Su.

To investigate whether genetic alteration of the STK11 (serine/threonine kinase 11)/LKB1 tumor-suppressor gene is involved in the carcinogenesis of head and neck squamous cell carcinoma (HNSCC), the entire encoding exons and flanking intronic sequences of the STK11/LKB1 gene were analysed with direct genomic sequencing of 15 HNSCC specimens. A novel missense mutation with presumed loss of heterozygosity (LOH) and 10 polymorphisms were identified in these samples. The novel mutation of STK11/LKB1 at nucleotide position 613 G → A, which causes the amino-acid substitution from alanine to threonine at residue 205 within the catalytic kinase domain, was identified in cell line RPMI 2650. To further determine whether this point mutation affects the gene function, constructs of the wild type and A205T mutant of the STK11/LKB1 gene expression vectors were created and transfected into RPMI 2650 cells. Our results showed that the reintroduction of the wild-type but not the mutant STK11/LKB1 construct into RPMI 2650 cells induced suppression of the cell growth. The mutation also affected the kinase activity of the Stk11/Lkb1 protein. This led us to conclude that the A205T point mutation of the STK11/LKB1 gene produces functionally inactive proteins. This is the first described mutation of the STK11/LKB1 gene in HNSCC. While the mutation frequency of the STK11/LKB1 gene in HNSCC remains to be determined in future studies, our data strongly suggests that STK11/LKB1 is involved in the carcinogenesis of HNSCC.


Pancreas | 2005

RPL38, FOSL1, and UPP1 are predominantly expressed in the pancreatic ductal epithelium.

Fikret Sahin; Wanglong Qiu; Robb E. Wilentz; Christine A. Iacobuzio-Donahue; Andres Grosmark; Gloria H. Su

Objectives: Establishing more effective treatment of pancreatic cancer requires an understanding of the molecular events leading to the onset and progression of this disease. The biology of tumorigenesis may be better understood if cell type-specific genes in the pancreas are more recognized. This recognition may be as important as discovering a disease-responsible gene. Identification of a ductal epithelium-specific gene can contribute not only to our knowledge of pancreatic tumorigenesis, tumor marker discovery, and effective drug targeting but also is crucial for making a reliable animal model. Methods: We used the x-Profiler engine online to compare the SAGE (Serial Analysis of Gene Expression) libraries derived from 2 short-term cultures of normal human ductal epithelial cells from the pancreas against 34 other SAGE libraries generated from other normal human tissues to identify the best candidate gene specific for the ductal epithelium of the pancreas. Results: We identified 3 genes, ribosomal protein L38 (RPL38), uridine phosphorylase (UPP1), and FOS-like antigen-1 (FOSL1), predominantly expressed in the pancreatic ductal epithelium. The expression patterns of these 3 genes were confirmed by virtual Northern analysis, semi-quantitative RT-PCR, and in situ hybridization. Conclusion: Although the expressions of these 3 genes are not completely restricted to the ductal epithelium of the pancreas, we showed that they have more specific expression patterns than CK19 and MUC1. We also demonstrated that all 3 genes are highly expressed in a panel of pancreatic cancer cell lines and can potentially be useful in tumor targeting or as tumor markers.

Collaboration


Dive into the Wanglong Qiu's collaboration.

Top Co-Authors

Avatar

Gloria H. Su

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Helen Remotti

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph H. Hruban

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dario Garcia-Carracedo

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine A. Iacobuzio-Donahue

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lanny G. Close

Columbia University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge