Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wanjun Gu is active.

Publication


Featured researches published by Wanjun Gu.


PLOS Computational Biology | 2010

A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes

Wanjun Gu; Tong Zhou; Claus O. Wilke

Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.


Virus Research | 2004

Analysis of synonymous codon usage in SARS Coronavirus and other viruses in the Nidovirales.

Wanjun Gu; Tong Zhou; Jianmin Ma; Xiao Sun; Zuhong Lu

n Abstractn n In this study, we calculated the codon usage bias in severe acute respiratory syndrome Coronavirus (SARSCoV) and performed a comparative analysis of synonymous codon usage patterns in SARSCoV and 10 other evolutionary related viruses in the Nidovirales. Although there is a significant variation in codon usage bias among different SARSCoV genes, codon usage bias in SARSCoV is a little slight, which is mainly determined by the base compositions on the third codon position. By comparing synonymous codon usage patterns in different viruses, we observed that synonymous codon usage pattern in these virus genes was virus specific and phylogenetically conserved, but it was not host specific. Phylogenetic analysis based on codon usage pattern suggested that SARSCoV was diverged far from all three known groups of Coronavirus. Compositional constraints could explain most of the variation of synonymous codon usage among these virus genes, while gene function is also correlated to synonymous codon usages to a certain extent. However, translational selection and gene length have no effect on the variations of synonymous codon usage in these virus genes.n n


PLOS ONE | 2011

A Comprehensive Survey of miRNA Repertoire and 3′ Addition Events in the Placentas of Patients with Pre-Eclampsia from High-Throughput Sequencing

Li-li Guo; Qi Yang; Hailing Li; Qinyu Ge; Wanjun Gu; Yunfei Bai; Zuhong Lu

Background To gain insight into potential roles of isomiR spectrum and isomiRs with 3′ additions in pre-eclampsia, we performed a comprehensive survey of miRNA repertoire and 3′ addition events from placental samples with different degrees of pre-eclampsia by applying SOLiD sequencing platform. Principal Findings Over 30% isomiRs were detected with 3′ non-template additional nucleotides, especially for additional nucleotide of adenosine. However, these modified isomiRs showed a lower percentage of total miRNA expression (<15%). Generally, 1-3 abundant isomiRs from a given miRNA locus were identified, but none of them was detected with 3′ additions. Different miRNAs indicated various isomiR spectrums and expression patterns. The most abundant isomiR spectrum, isomiR profile and expression pattern always were stability, but herein we found several exceptions across samples, especially between normal and diseased samples. At isomiR level, we detected a distinct subset of differentially expressed modified isomiRs between normal and diseased samples or between mild and severe samples. Gene Ontology analysis of their experimentally validated target genes revealed enrichment for specific biological process categories. Conclusions The phenomenon of multiple isomiRs, especially for isomiRs with 3′ additions, is not a random event during pre-miRNA processing. Varieties of isomiRs and expression patterns reveal potential functional implication and should be taken into account. The study enriches association of miRNAs and human disease, including potential roles of various miRNA variants and 3′ addition events.


Molecular Biology and Evolution | 2010

Detecting Positive and Purifying Selection at Synonymous Sites in Yeast and Worm

Tong Zhou; Wanjun Gu; Claus O. Wilke

We present a new computational method to identify positive and purifying selection at synonymous sites in yeast and worm. We define synonymous substitutions that change codons from preferred to unpreferred or vice versa as nonconservative synonymous substitutions and all other substitutions as conservative. Using a maximum-likelihood framework, we then test whether conservative and nonconservative synonymous substitutions occur at equal rates. Our approach replaces the standard rate of synonymous substitutions per synonymous site, dS, with two new rates, the conservative synonymous substitution rate (dS(C)) and the nonconservative synonymous substitution rate (dS(N)). Based on the ratio dS(N)/dS(C), we find that 0.05% of all yeast genes and none of worm genes show evidence of positive selection at synonymous sites (dS(N)/dS(C) > 1). On the other hand, 9.44% of all yeast genes and 5.12% of all worm genes show evidence of significant purifying selection on synonymous sites (dS(N)/dS(C) < 1). We also find that dS(N) correlates strongly with gene expression level, whereas the correlation between expression level and dS(C) is very weak. Thus, dS(N) captures most of the signal of selection for translational accuracy and speed, whereas dS(C) is not strongly influenced by this selection pressure. We suggest that the ratio dN/dS(C) may be more appropriate than the ratio dN/dS to identify positive or purifying selection on amino acids.


BioSystems | 2002

Cluster analysis of the codon use frequency of MHC genes from different species

Jianmin Ma; Tong Zhou; Wanjun Gu; Xiao Sun; Zuhong Lu

The relative synonymous codon use frequency of 135 MHC genes from four mammal species (Homo sapiens, Pan troglodyte, Macaca mulanta and Rattus norvegicus) is analyzed using a hierarchical cluster method. The result suggests that gene function is the dominant factor that determines codon usage bias, while species is a minor factor that determines further difference in codon usage bias for genes with similar functions. The conclusion may be useful in gene classification and gene function prediction.


Molecular Cancer | 2013

Expression profiling of ion channel genes predicts clinical outcome in breast cancer

Jae Hong Ko; Eun A. Ko; Wanjun Gu; Inja Lim; Hyoweon Bang; Tong Zhou

BackgroundIon channels play a critical role in a wide variety of biological processes, including the development of human cancer. However, the overall impact of ion channels on tumorigenicity in breast cancer remains controversial.MethodsWe conduct microarray meta-analysis on 280 ion channel genes. We identify candidate ion channels that are implicated in breast cancer based on gene expression profiling. We test the relationship between the expression of ion channel genes and p53 mutation status, ER status, and histological tumor grade in the discovery cohort. A molecular signature consisting of ion channel genes (IC30) is identified by Spearman’s rank correlation test conducted between tumor grade and gene expression. A risk scoring system is developed based on IC30. We test the prognostic power of IC30 in the discovery and seven validation cohorts by both Cox proportional hazard regression and log-rank test.Results22, 24, and 30 ion channel genes are found to be differentially expressed with a change in p53 mutation status, ER status, and tumor histological grade in the discovery cohort. We assign the 30 tumor grade associated ion channel genes as the IC30 gene signature. We find that IC30 risk score predicts clinical outcome (Pu2009<u20090.05) in the discovery cohort and 6 out of 7 validation cohorts. Multivariate and univariate tests conducted in two validation cohorts indicate that IC30 is a robust prognostic biomarker, which is independent of standard clinical and pathological prognostic factors including patient age, lymph node status, tumor size, tumor grade, estrogen and progesterone receptor status, and p53 mutation status.ConclusionsWe identified a molecular gene signature IC30, which represents a promising diagnostic and prognostic biomarker in breast cancer. Our results indicate that information regarding the expression of ion channels in tumor pathology could provide new targets for therapy in human cancers.


PLOS ONE | 2011

Cross-Mapping Events in miRNAs Reveal Potential miRNA-Mimics and Evolutionary Implications

Li Guo; Tingming Liang; Wanjun Gu; Yuming Xu; Yunfei Bai; Zuhong Lu

MicroRNAs (miRNAs) have important roles in various biological processes. miRNA cross-mapping is a prevalent phenomenon where miRNA sequence originating from one genomic region is mapped to another location. To have a better understanding of this phenomenon in the human genome, we performed a detailed analysis in this paper using public miRNA high-throughput sequencing data and all known human miRNAs. We observed widespread cross-mapping events between miRNA precursors (pre-miRNAs), other non-coding RNAs (ncRNAs) and the opposite strands of pre-miRNAs by analyzing the high-throughput sequencing data. Computational analysis on all known human miRNAs also confirmed that many of them could be involved in cross-mapping events. The processing or decay of both ncRNAs and pre-miRNA opposite strand transcripts may contribute to miRNA enrichment, although some might be miRNA-mimics due to miRNA mis-annotation. Comparing to canonical miRNAs, miRNAs involved in cross-mapping events between pre-miRNAs and other ncRNAs normally had shorter lengths (17-19 nt), lower prediction scores and were classified as pseudo miRNA precursors. Notably, 4.9% of all human miRNAs could be accurately mapped to the opposite strands of pre-miRNAs, which showed that both strands of the same genomic region had the potential to produce mature miRNAs and simultaneously implied some potential miRNA precursors. We proposed that the cross-mapping events are more complex than we previously thought. Sequence similarity between other ncRNAs and pre-miRNAs and the specific stem-loop structures of pre-miRNAs may provide evolutionary implications.


RNA | 2014

The role of RNA structure at 5′ untranslated region in microRNA-mediated gene regulation

Wanjun Gu; Yuming Xu; Xueying Xie; Ting Wang; Jae Hong Ko; Tong Zhou

Recent studies have suggested that the secondary structure of the 5 untranslated region (5 UTR) of messenger RNA (mRNA) is important for microRNA (miRNA)-mediated gene regulation in humans. mRNAs that are targeted by miRNA tend to have a higher degree of local secondary structure in their 5 UTR; however, the general role of the 5 UTR in miRNA-mediated gene regulation remains unknown. We systematically surveyed the secondary structure of 5 UTRs in both plant and animal species and found a universal trend of increased mRNA stability near the 5 cap in mRNAs that are regulated by miRNA in animals, but not in plants. Intra-genome comparison showed that gene expression level, GC content of the 5 UTR, number of miRNA target sites, and 5 UTR length may influence mRNA structure near the 5 cap. Our results suggest that the 5 UTR secondary structure performs multiple functions in regulating post-transcriptional processes. Although the local structure immediately upstream of the start codon is involved in translation initiation, RNA structure near the 5 cap site, rather than the structure of the full-length 5 UTR sequences, plays an important role in miRNA-mediated gene regulation.


IEEE Transactions on Nanobioscience | 2003

Folding type specific secondary structure propensities of synonymous codons

Wanjun Gu; Tong Zhou; Jianmin Ma; Xiao Sun; Zuhong Lu

We have proposed new amino acid secondary structure propensities in proteins with different folding types based on synonymous codons. They have been derived from 200 all alpha, all beta, alpha/beta, and alpha + beta proteins of known structures and their coding genes. The secondary structure propensities of the same codon in gene coding for different folding type proteins are not the same. For instance, amino acid Ile coded by AUU is indifferent to form the alpha unit in the alpha + beta protein class, but it is a former and a breaker for the alpha unit in the all alpha protein class and the alpha/beta class, respectively. On the other hand, the secondary structure propensities of different synonymous codons in the coding genes with the same folding type are also not all the same. As an example, CGU, CGG, and AGA, which are synonymous codons of Arg, are preferential to form the alpha unit in all alpha proteins, while CGA is an alpha unit breaker and the other two synonymous codons, CGC and AGG, are indifferent to form or break the alpha unit. As a result, protein secondary structure information contained both in mRNA sequences and in amino acid sequences has been introduced in these codon-based amino acid secondary structure propensities. These codon-based amino acid secondary structure propensities are helpful to in vitro protein design and protein secondary structure prediction.


PLOS ONE | 2013

Biological Basis of miRNA Action when Their Targets Are Located in Human Protein Coding Region

Wanjun Gu; Xiaofei Wang; Chuanying Zhai; Tong Zhou; Xueying Xie

Recent analyses have revealed many functional microRNA (miRNA) targets in mammalian protein coding regions. But, the mechanisms that ensure miRNA function when their target sites are located in protein coding regions of mammalian mRNA transcripts are largely unknown. In this paper, we investigate some potential biological factors, such as target site accessibility and local translation efficiency. We computationally analyze these two factors using experimentally identified miRNA targets in human protein coding region. We find site accessibility is significantly increased in miRNA target region to facilitate miRNA binding. At the mean time, local translation efficiency is also selectively decreased near miRNA target region. GC-poor codons are preferred in the flank region of miRNA target sites to ease the access of miRNA targets. Within-genome analysis shows substantial variations of site accessibility and local translation efficiency among different miRNA targets in the genome. Further analyses suggest target gene’s GC content and conservation level could explain some of the differences in site accessibility. On the other hand, target gene’s functional importance and conservation level can affect local translation efficiency near miRNA target region. We hence propose both site accessibility and local translation efficiency are important in miRNA action when miRNA target sites are located in mammalian protein coding regions.

Collaboration


Dive into the Wanjun Gu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Sun

Southeast University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun A. Ko

University of California

View shared research outputs
Top Co-Authors

Avatar

Ting Wang

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge