Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wanyin Deng is active.

Publication


Featured researches published by Wanyin Deng.


Molecular Microbiology | 2004

Identification and characterization of NleA, a non‐LEE‐encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7

Samantha Gruenheid; Inna Sekirov; Nikhil A. Thomas; Wanyin Deng; Paul O'Donnell; David L. Goode; Yuling Li; Elizabeth A. Frey; Nathaniel Francis Brown; Pavel Metalnikov; Tony Pawson; Keith Ashman; B. Brett Finlay

Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 uses a specialized protein translocation apparatus, the type III secretion system (TTSS), to deliver bacterial effector proteins into host cells. These effectors interfere with host cytoskeletal pathways and signalling cascades to facilitate bacterial survival and replication and promote disease. The genes encoding the TTSS and all known type III secreted effectors in EHEC are localized in a single pathogenicity island on the bacterial chromosome known as the locus for enterocyte effacement (LEE). In this study, we performed a proteomic analysis of proteins secreted by the LEE‐encoded TTSS of EHEC. In addition to known LEE‐encoded type III secreted proteins, such as EspA, EspB and Tir, a novel protein, NleA (non‐LEE‐encoded effector A), was identified. NleA is encoded in a prophage‐associated pathogenicity island within the EHEC genome, distinct from the LEE. The LEE‐encoded TTSS directs translocation of NleA into host cells, where it localizes to the Golgi apparatus. In a panel of strains examined by Southern blot and database analyses, nleA was found to be present in all other LEE‐containing pathogens examined, including enteropathogenic E. coli and Citrobacter rodentium, and was absent from non‐pathogenic strains of E. coli and non‐LEE‐containing pathogens. NleA was determined to play a key role in virulence of C. rodentium in a mouse infection model.


Infection and Immunity | 2001

Locus of Enterocyte Effacement from Citrobacter rodentium: Sequence Analysis and Evidence for Horizontal Transfer among Attaching and Effacing Pathogens

Wanyin Deng; Yuling Li; Bruce A. Vallance; B. Brett Finlay

ABSTRACT The family of attaching and effacing (A/E) bacterial pathogens, which includes diarrheagenic enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E.coli (EHEC), remains a significant threat to human and animal health. These bacteria intimately attach to host intestinal cells, causing the effacement of brush border microvilli. The genes responsible for this phenotype are encoded in a pathogenicity island called the locus of enterocyte effacement (LEE). Citrobacter rodentium is the only known murine A/E pathogen and serves as a small animal model for EPEC and EHEC infections. Here we report the full DNA sequence of C. rodentium LEE and provide a comparative analysis with the published LEEs from EPEC, EHEC, and the rabbit diarrheagenic E. colistrain RDEC-1. Although C. rodentium LEE shows high similarities throughout the entire sequence and shares all 41 open reading frames with the LEE from EPEC, EHEC, and RDEC-1, it is unique in its location of the rorf1 androrf2/espG genes and the presence of several insertion sequences (IS) and IS remnants. The LEE of EPEC and EHEC is inserted into the selC tRNA gene. In contrast, theCitrobacter LEE is flanked on one side by an operon encoding an ABC transport system, and an IS element and sequences homologous to Shigella plasmid R100 and EHEC pO157 flank the other. The presence of plasmid sequences next to C.rodentium LEE suggests that the prototype LEE resided on a horizontally transferable plasmid. Additional sequence analysis reveals that the 3-kb plasmid in C.rodentium is nearly identical to p9705 in EHEC O157:H7, suggesting that horizontal plasmid transfer among A/E pathogens has occurred. Our results indicate that the LEE has been acquired byC. rodentium and A/E E.coli strains independently during evolution.


Molecular Microbiology | 2003

Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice

Wanyin Deng; Bruce A. Vallance; Yuling Li; José L. Puente; B. Brett Finlay

Citrobacter rodentium infection of mice serves as a relevant small animal model to study enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) infections in man. Enteropathogenic E. coli and EHEC translocate Tir into the host cytoplasmic membrane, where it serves as the receptor for the bacterial adhesin intimin and plays a central role in actin condensation beneath the adherent bacterium. In this report, we examined the function of C. rodentium Tir both in vitro and in vivo. Similar to EPEC, C. rodentium Tir is tyrosine phosphorylated and is essential for actin condensation. Citrobacter Tir and EPEC Tir are functionally interchangeable and both require tyrosine phosphorylation to mediate actin rearrangements. In contrast, Citrobacter Tir supports actin nucleation in EHEC independent of tyrosine phosphorylation, while EHEC Tir cannot replace Citrobacter Tir for this function. This indicates that C. rodentium and EPEC use an actin nucleating mechanism different from EHEC. We also found that Tir is expressed and translocated into mouse enterocytes in vivo by C. rodentium during infections. This represents the first direct demonstration of a type III effector translocated in vivo into a natural host by any pathogen. In addition, we showed that Tir, but not its tyrosine phosphorylation, is essential for C. rodentium to colonize the large bowel and induce attaching/effacing (A/E) lesions and colonic hyperplasia in mice, and that both EPEC Tir and EHEC Tir can substitute for Citrobacter Tir for these activities in vivo. These results thus demonstrate that Tir is an essential virulence factor in this infection model. The data also show that the function of Tir tyrosine phosphorylation and its subsequent actin nucleating activity are not essential for C. rodentium colonization of the mouse gut nor for inducing A/E lesions and colonic hyperplasia, thereby uncoupling colonization and disease from actin condensation for this A/E pathogen.


Cellular Microbiology | 2006

Attaching and effacing pathogen‐induced tight junction disruption in vivo

Julian A. Guttman; Yuling Li; Mark E. Wickham; Wanyin Deng; A. Wayne Vogl; B. Brett Finlay

Diarrhoea is a hallmark of infections by the human attaching and effacing (A/E) pathogens, enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). Although the mechanisms underlying diarrhoea induced by these pathogens remain unknown, cell culture results have suggested that these pathogens may target tight junctions. Tight junctions in the colon function as physical intercellular barriers that separate and prevent mixing of the luminal contents with adlumenal regions of the epithelium. Consequently, it is thought that the disruption of intestinal epithelial tight junctions by A/E pathogens could result in a loss of barrier function in the alimentary tract; however, this remains unexamined. Here we demonstrate for the first time that A/E pathogen infection results in the morphological alteration of tight junctions during natural disease. Tight junction alteration, characterized by relocalization of the transmembrane tight junction proteins claudin 1, 3 and 5, is a functional disruption; molecular tracers, which do not normally penetrate uninfected epithelia, pass across pathogen‐infected epithelia. Functional junction disruption occurs with a concomitant increase in colon luminal water content. The effects on tissue are dependent upon the bacterial type III effector EspF (E. coli secreted protein F), because bacteria lacking EspF, while able to colonize, are defective for junction disruption and result in decreased proportions of water in the colon compared with wild‐type infection. These results suggest that the diarrhoea induced by A/E pathogens occurs as part of functional tight junction disruption.


Infection and Immunity | 2005

Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens.

Wanyin Deng; Yuling Li; Philip R. Hardwidge; Elizabeth A. Frey; Richard A. Pfuetzner; Sansan Lee; Samantha Gruenheid; Natalie C. J. Strynakda; José L. Puente; B. Brett Finlay

ABSTRACT Human enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and the mouse pathogen Citrobacter rodentium (CR) belong to the family of attaching and effacing (A/E) bacterial pathogens. They possess the locus of enterocyte effacement (LEE) pathogenicity island, which encodes a type III secretion system. These pathogens secrete a number of proteins into culture media, including type III effector proteins and translocators that are required for the translocation of effectors into host cells. Preliminary evidence indicated that the LEE-encoded SepL and Rorf6/SepD may form a molecular switch that controls the secretion of translocators and effectors in CR. Here, we show that SepL and SepD indeed perform this function in A/E pathogens such as EHEC and EPEC. Their sepL and sepD mutants do not secrete translocators but exhibit enhanced secretion of effectors. We demonstrate that SepL and SepD interact with each other and that both SepL and SepD are localized to the bacterial membranes. Furthermore, we demonstrate that culture media influence the type III secretion profile of EHEC, EPEC, and CR and that low-calcium concentrations inhibit secretion of translocators but promote the secretion of effectors, similar to effects on type III secretion by mutations in sepL and sepD. However, the secretion profile of the sepD and sepL mutants is not affected by these culture conditions. Collectively, our results suggest that SepL and SepD not only are necessary for efficient translocator secretion in A/E pathogens but also control a switch from translocator to effector secretion by sensing certain environmental signals such as low calcium.


PLOS Pathogens | 2009

Bacterial Effector Binding to Ribosomal Protein S3 Subverts NF-κB Function

Xiaofei Gao; Fengyi Wan; Kristina S. Mateo; Eduardo Callegari; Dan Wang; Wanyin Deng; José L. Puente; Feng Li; Michael S. Chaussee; B. Brett Finlay; Michael J. Lenardo; Philip R. Hardwidge

Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC) causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome) for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC), Salmonella, Shigella, Yersinia) utilize a type III secretion system (T3SS) to inject virulence proteins (effectors) into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3), a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-κB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-κB chaperone IκBα NleH1 repressed the transcription of a RPS3/NF-κB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well as an AP-1-dependent reporter. We identified a region of NleH1 (N40-K45) that is at least partially responsible for the inhibitory activity of NleH1 toward RPS3. Deleting nleH1 from E. coli O157:H7 produced a hypervirulent phenotype in a gnotobiotic piglet model of Shiga toxin-producing E. coli infection. We suggest that NleH may disrupt host innate immune responses by binding to a cofactor of host transcriptional complexes.


Journal of Bacteriology | 2005

A Positive Regulatory Loop Controls Expression of the Locus of Enterocyte Effacement-Encoded Regulators Ler and GrlA

Jeannette Barba; Víctor H. Bustamante; Mario Alberto Flores-Valdez; Wanyin Deng; B. Brett Finlay; José L. Puente

The formation of attaching and effacing (A/E) lesions on intestinal epithelial cells is an essential step in the pathogenesis of human enteropathogenic and enterohemorrhagic Escherichia coli and of the mouse pathogen Citrobacter rodentium. The genes required for the development of the A/E phenotype are located within a pathogenicity island known as the locus of enterocyte effacement (LEE). The LEE-encoded transcriptional regulators Ler, an H-NS-like protein, and GrlA, a member of a novel family of transcriptional activators, positively control the expression of the genes located in the LEE and their corresponding virulence. In this study, we used C. rodentium as a model to study the mechanisms controlling the expression of Ler and GrlA. By deletion analysis of the ler and grlRA regulatory regions and complementation experiments, negative and positive cis-acting regulatory motifs were identified that are essential for the regulation of both genes. This analysis confirmed that GrlA is required for the activation of ler, but it also showed that Ler is required for the expression of grlRA, revealing a novel regulatory loop controlling the optimal expression of virulence genes in A/E pathogens. Furthermore, our results indicate that Ler and GrlA induce the expression of each other by, at least in part, counteracting the repression mediated by H-NS. However, whereas GrlA is still required for the optimal expression of ler even in the absence of H-NS, Ler is not needed for the expression of grlRA in the absence of H-NS. This type of transcriptional positive regulatory loop represents a novel mechanism in pathogenic bacteria that is likely required to maintain an appropriate spatiotemporal transcriptional response during infection.


Infection and Immunity | 2002

Mice lacking T and B lymphocytes develop transient colitis and crypt hyperplasia yet suffer impaired bacterial clearance during Citrobacter rodentium infection.

Bruce A. Vallance; Wanyin Deng; Leigh A. Knodler; B. Brett Finlay

ABSTRACT The bacterial pathogen Citrobacter rodentium belongs to a family of gastrointestinal pathogens that includes enteropathogenic and enterohemorrhagic Escherichia coli and is the causative agent of transmissible colonic hyperplasia in mice. The molecular mechanisms used by these pathogens to colonize host epithelial surfaces and form attaching and effacing (A/E) lesions have undergone intense study. In contrast, little is known about the hosts immune response to these infections and its importance in tissue pathology and bacterial clearance. To address these issues, wild-type mice and mice lacking T and B lymphocytes (RAG1 knockout [KO]) were infected with C. rodentium. By day 10 postinfection (p.i.), both wild-type and RAG1 KO mice developed colitis and crypt hyperplasia, and these responses became more exaggerated in wild-type mice over the next 2 weeks, as they cleared the infection. By day 24 p.i., bacterial clearance was complete, and the colitis had subsided; however, crypt heights remained increased. In contrast, inflammatory and crypt hyperplastic responses in the RAG1 KO mice were transient, subsiding after 2 weeks. By day 24 p.i., RAG1 KO mice showed no signs of bacterial clearance and infection was often fatal. Surprisingly, despite remaining heavily infected, tissues from RAG1 KO mice surviving the acute colitis showed few signs of disease. These results thus emphasize the important contribution of the host immune response during infection by A/E bacterial pathogens. While T and/or B lymphocytes are essential for host defense against C. rodentium, they also mediate much of the tissue pathology and disease symptoms that occur during infection.


Cellular Microbiology | 2000

Enteropathogenic Escherichia coli (EPEC) attachment to epithelial cells: exploiting the host cell cytoskeleton from the outside

Jean Celli; Wanyin Deng; B. Brett Finlay

Enteropathogenic Escherichia coli (EPEC), a leading cause of human infantile diarrhoea, is the prototype for a family of intestinal bacterial pathogens that induce attaching and effacing (A/E) lesions on host cells. A/E lesions are characterized by localized effacement of the brush border of enterocytes, intimate bacterial attachment and pedestal formation beneath the adherent bacteria. As a result of some recent breakthrough discoveries, EPEC has now emerged as a fascinating paradigm for the study of host–pathogen interactions and cytoskeletal rearrangements that occur at the host cell membrane. EPEC uses a type III secretion machinery to attach to epithelial cells, translocating its own receptor for intimate attachment, Tir, into the host cell, which then binds to intimin on the bacterial surface. Studies of EPEC‐induced cytoskeletal rearrangements have begun to provide clues as to the mechanisms used by this pathogen to subvert the host cell cytoskeleton and signalling pathways. These findings have unravelled new ways by which pathogenic bacteria exploit host processes from the cell surface and have shed new light on how EPEC might cause diarrhoea.


Nature | 2008

Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS.

Raz Zarivach; Wanyin Deng; Marija Vuckovic; Heather B. Felise; Hai V. Nguyen; Samuel I. Miller; B. Brett Finlay; Natalie C. J. Strynadka

During infection by Gram-negative pathogenic bacteria, the type III secretion system (T3SS) is assembled to allow for the direct transmission of bacterial virulence effectors into the host cell. The T3SS system is characterized by a series of prominent multi-component rings in the inner and outer bacterial membranes, as well as a translocation pore in the host cell membrane. These are all connected by a series of polymerized tubes that act as the direct conduit for the T3SS proteins to pass through to the host cell. During assembly of the T3SS, as well as the evolutionarily related flagellar apparatus, a post-translational cleavage event within the inner membrane proteins EscU/FlhB is required to promote a secretion-competent state. These proteins have long been proposed to act as a part of a molecular switch, which would regulate the appropriate chronological secretion of the various T3SS apparatus components during assembly and subsequently the transported virulence effectors. Here we show that a surface type II β-turn in the Escherichia coli protein EscU undergoes auto-cleavage by a mechanism involving cyclization of a strictly conserved asparagine residue. Structural and in vivo analysis of point and deletion mutations illustrates the subtle conformational effects of auto-cleavage in modulating the molecular features of a highly conserved surface region of EscU, a potential point of interaction with other T3SS components at the inner membrane. In addition, this work provides new structural insight into the distinct conformational requirements for a large class of self-cleaving reactions involving asparagine cyclization.

Collaboration


Dive into the Wanyin Deng's collaboration.

Top Co-Authors

Avatar

B. Brett Finlay

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Bruce A. Vallance

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

José L. Puente

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Yuling Li

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Natalie C. J. Strynadka

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Samantha Gruenheid

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Wickham

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Leonard J. Foster

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Marija Vuckovic

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge