Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ward H. Thompson is active.

Publication


Featured researches published by Ward H. Thompson.


Annual Review of Physical Chemistry | 2011

Solvation Dynamics and Proton Transfer in Nanoconfined Liquids

Ward H. Thompson

Nanoconfined liquids are of interest because of both their fundamental properties and their potential utility in an array of applications. The structure and dynamics of the liquid can be dramatically impacted by the geometrical constraints and the interactions with the interface. Understanding the molecular-level origins of these changes and how they are determined by the characteristics of the confining framework is the subject of ongoing experimental and theoretical studies. The progress and remaining challenges in these efforts are reviewed in the context of solvation dynamics and proton transfer reactions, processes that are strongly affected by nanoscale confinement.


Journal of Chemical Physics | 2012

Reorientation dynamics of nanoconfined water: Power-law decay, hydrogen-bond jumps, and test of a two-state model

Damien Laage; Ward H. Thompson

The reorientation dynamics of water confined within nanoscale, hydrophilic silica pores are investigated using molecular dynamics simulations. The effect of surface hydrogen-bonding and electrostatic interactions are examined by comparing with both a silica pore with no charges (representing hydrophobic confinement) and bulk water. The OH reorientation in water is found to slow significantly in hydrophilic confinement compared to bulk water, and is well-described by a power-law decay extending beyond one nanosecond. In contrast, the dynamics of water in the hydrophobic pore are more modestly affected. A two-state model, commonly used to interpret confined liquid properties, is tested by analysis of the position-dependence of the water dynamics. While the two-state model provides a good fit of the orientational decay, our molecular-level analysis evidences that it relies on an over-simplified picture of water dynamics. In contrast with the two-state model assumptions, the interface dynamics is markedly heterogeneous, especially in the hydrophilic pore and there is no single interfacial state with a common dynamics.


Journal of Physical Chemistry A | 2009

Simulations of Infrared Spectra of Nanoconfined Liquids: Acetonitrile Confined in Nanoscale, Hydrophilic Silica Pores†

Christine M. Morales; Ward H. Thompson

The infrared spectrum of acetonitrile confined in hydrophilic silica pores roughly cylindrical and 2.4 nm in diameter has been simulated using molecular dynamics. Hydrogen bonding interactions between acetonitrile and silanol groups on the pore wall involve charge transfer effects that have been incorporated through corrections based on electronic structure calculations on a dimer. The simulated spectrum of confined acetonitrile differs most prominently from that of the bulk liquid by the appearance of a blue-shifted shoulder, in agreement with previous experimental measurements. The dominant peak is little changed in position relative to the bulk liquid case, but broadened by approximately 40%. A detailed analysis of the structure and dynamics of the confined liquid acetonitrile is presented, and the spectral features are examined in this context. It is found that packing effects, hydrogen bonding, and electrostatic interactions all play important roles. Finally, the molecular-level information that can be obtained about the dynamics of the confined liquid from the infrared line shape is discussed.


Journal of Chemical Physics | 2004

Simulations of time-dependent fluorescence in nano-confined solvents

Ward H. Thompson

The time-dependent fluorescence of a model diatomic molecule with a charge-transfer electronic transition in confined solvents has been simulated. The effect of confining the solvent is examined by comparing results for solutions contained within hydrophobic spherical cavities of varying size (radii of 10-20 angstroms). In previous work [J. Chem. Phys. 118, 6618 (2002)] it was found that the solute position in the cavity critically affects the absorption and fluorescence spectra and their dependence on cavity size. Here we examine the effect of cavity size on the time-dependent fluorescence, a common experimental probe of solvent dynamics. The present results confirm a prediction that motion of the solute in the cavity after excitation can be important in the time-dependent fluorescence. The effects of solvent density are also considered. The results are discussed in the context of interpreting time-dependent fluorescence measurements of confined solvent systems.


Journal of Physical Chemistry B | 2011

On the reorientation and hydrogen-bond dynamics of alcohols.

Anthony A. Vartia; Katie R. Mitchell-Koch; Damien Laage; Ward H. Thompson

The mechanism of the OH bond reorientation in liquid methanol and ethanol is examined. It is found that the extended jump model, recently developed for water, describes the OH reorientation in these liquids. The slower reorientational dynamics in these alcohols compared to water can be explained by two key factors. The alkyl groups on the alcohol molecules exclude potential partners for hydrogen bonding exchanges, an effect that grows with the size of the alkyl chain. This increases the importance of the reorientation of intact hydrogen bonds, which also slows with increasing size of the alcohol and becomes the dominant reorientation pathway.


Journal of Chemical Physics | 2007

On the connection between Gaussian statistics and excited-state linear response for time-dependent fluorescence

Brian B. Laird; Ward H. Thompson

Time-dependent fluorescence (TDF) of a chromophore in a polar or nonpolar solvent is frequently simulated using linear-response approximations. It is shown that one such linear-response-type approximation for the TDF Stokes shift derived by Carter and Hynes [J. Chem. Phys. 94, 5961 (1991)] that is based on excited-state dynamics gives the same result as that obtained by assuming Gaussian statistics for the energy gap. The derivation provides insight into the much discussed relationship between linear response and Gaussian statistics. In particular, subtle but important differences between the two approximations are illuminated that suggest that the result is likely more generally applicable than suggested by the usual linearization procedure. In addition, the assumption of Gaussian statistics directly points to straightforward checks of the validity of the approximation with essentially no additional computational effort.


Journal of Physical Chemistry A | 2014

Role of Tunable Acid Catalysis in Decomposition of α-Hydroxyalkyl Hydroperoxides and Mechanistic Implications for Tropospheric Chemistry

Manoj Kumar; Daryle H. Busch; Bala Subramaniam; Ward H. Thompson

Electronic structure calculations have been used to investigate possible gas-phase decomposition pathways of α-hydroxyalkyl hydroperoxides (HHPs), an important source of tropospheric hydrogen peroxide and carbonyl compounds. The uncatalyzed as well as water- and acid-catalyzed decomposition of multiple HHPs have been examined at the M06-2X/aug-cc-pVTZ level of theory. The calculations indicate that, compared to an uncatalyzed or water-catalyzed reaction, the free-energy barrier of an acid-catalyzed decomposition leading to an aldehyde or ketone and hydrogen peroxide is dramatically lowered. The calculations also find a direct correlation between the catalytic effect of an acid and the distance separating its hydrogen acceptor and donor sites. Interestingly, the catalytic effect of an acid on the HHP decomposition resulting in the formation of carboxylic acid and water is relatively much smaller. Moreover, since the free-energy barrier of the acid-catalyzed aldehyde- or ketone-forming decomposition is ∼ 25% lower than that required to break the O-OH linkage of the HHP leading to the formation of hydroxyl radical, these results suggest that HHP decomposition is likely not an important source of tropospheric hydroxyl radical. Finally, transition state theory estimates indicate that the effective rate constants for the acid-catalyzed aldehyde- or ketone-forming HHP decomposition pathways are 2-3 orders of magnitude faster than those for the water-catalyzed reaction, indicating that an acid-catalyzed HHP decomposition is kinetically favored as well.


Journal of Chemical Physics | 2014

Origins of the non-exponential reorientation dynamics of nanoconfined water

Aoife C. Fogarty; Elise Duboué-Dijon; Damien Laage; Ward H. Thompson

The dynamics of water are dramatically modified upon confinement in nanoscale hydrophilic silica pores. In particular, the OH reorientation dynamics of the interfacial water are non-exponential and dramatically slowed relative to the bulk liquid. A detailed analysis of molecular dynamics simulations is carried out to elucidate the microscopic origins of this behavior. The results are analyzed in the context of the extended jump model for water that describes the reorientation as a combination of hydrogen-bond exchanges, or jumps, and rotation of intact hydrogen bonds, with the former representing the dominant contribution. Within this model, the roles of surface and dynamical heterogeneities are considered by spatially resolving the hydrogen-bond jump dynamics into individual sites on the silica pore surface. For each site the dynamics is nearly mono-exponential, indicating that dynamical heterogeneity is at most a minor influence, while the distribution of these individual site jump times is broad. The non-exponential dynamics can also not be attributed to enthalpic contributions to the barriers to hydrogen-bond exchanges. Two entropic effects related to the surface roughness are found to explain the retarded and diverse dynamics: those associated with the approach of a new hydrogen-bond acceptor and with the breaking of the initial hydrogen-bond.


Journal of Physical Chemistry A | 2014

Organic acids tunably catalyze carbonic acid decomposition.

Manoj Kumar; Daryle H. Busch; Bala Subramaniam; Ward H. Thompson

Density functional theory calculations predict that the gas-phase decomposition of carbonic acid, a high-energy, 1,3-hydrogen atom transfer reaction, can be catalyzed by a monocarboxylic acid or a dicarboxylic acid, including carbonic acid itself. Carboxylic acids are found to be more effective catalysts than water. Among the carboxylic acids, the monocarboxylic acids outperform the dicarboxylic ones wherein the presence of an intramolecular hydrogen bond hampers the hydrogen transfer. Further, the calculations reveal a direct correlation between the catalytic activity of a monocarboxylic acid and its pKa, in contrast to prior assumptions about carboxylic-acid-catalyzed hydrogen-transfer reactions. The catalytic efficacy of a dicarboxylic acid, on the other hand, is significantly affected by the strength of an intramolecular hydrogen bond. Transition-state theory estimates indicate that effective rate constants for the acid-catalyzed decomposition are four orders-of-magnitude larger than those for the water-catalyzed reaction. These results offer new insights into the determinants of general acid catalysis with potentially broad implications.


Journal of Chemical Physics | 2003

A general method for implementing vibrationally adiabatic mixed quantum-classical simulations

Ward H. Thompson

An approach for carrying out vibrationally adiabatic mixed quantum-classical molecular dynamics simulations is presented. An appropriate integration scheme is described for the vibrationally adiabatic equations of motion of a diatomic solute in a monatomic solvent and an approach for calculating the adiabatic energy levels is presented. Specifically, an iterative Lanczos algorithm with full reorthogonalization is used to solve for the lowest few vibrational eigenvalues and eigenfunctions. The eigenfunctions at one time step in a mixed quantum-classical trajectory are used to initiate the Lanczos calculation at the next time step. The basis set size is reduced by using a potential-optimized discrete variable representation. As a demonstration the problem of a homonuclear diatomic molecule in a rare gas fluid (N2 in Ar) has been treated. The approach is shown to be efficient and accurate. An important advantage of this approach is that it can be straightforwardly applied to polyatomic solutes that have mult...

Collaboration


Dive into the Ward H. Thompson's collaboration.

Top Co-Authors

Avatar

Manoj Kumar

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damien Laage

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob A. Harvey

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Being J. Ka

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Fang Liu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marsha I. Lester

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge