Ward Homan
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ward Homan.
Astronomy and Astrophysics | 2016
P. Kervella; Ward Homan; A. M. S. Richards; Leen Decin; I. McDonald; M. Montargès; Keiichi Ohnaka
Six billion years from now, while evolving on the asymptotic giant branch (AGB), the Sun will metamorphose from a red giant into a beautiful planetary nebula. This spectacular evolution will impact the solar system planets, but observational confirmations of the predictions of evolution models are still elusive as no planet orbiting an AGB star has yet been discovered. The nearby AGB red giant L 2 Puppis ( d = 64 pc) is surrounded by an almost edge-on circumstellar dust disk. We report new observations with ALMA at very high angular resolution (18 × 15 mas) in band 7 ( ν ≈ 350 GHz) that allow us to resolve the velocity profile of the molecular disk. We establish that the gas velocity profile is Keplerian within the central cavity of the dust disk, allowing us to derive the mass of the central star L 2 Pup A, m A = 0.659 ± 0.011 ± 0.041 M ⊙ (± 6.6%). From evolutionary models, we determine that L 2 Pup A had a near-solar main-sequence mass, and is therefore a close analog of the future Sun in 5 to 6 Gyr. The continuum map reveals a secondary source (B) at a radius of 2 AU contributing f B / f A = 1.3 ± 0.1% of the flux of the AGB star. L 2 Pup B is also detected in CO emission lines at a radial velocity of v B = 12.2 ± 1.0 km s -1 . The close coincidence of the center of rotation of the gaseous disk with the position of the continuum emission from the AGB star allows us to constrain the mass of the companion to m B = 12 ± 16 M Jup . L 2 Pup B is most likely a planet or low-mass brown dwarf with an orbital period of about five years. Its continuum brightness and molecular emission suggest that it may be surrounded by an extended molecular atmosphere or an accretion disk. L 2 Pup therefore emerges as a promising vantage point on the distant future of our solar system.
Astronomy and Astrophysics | 2017
R. De Nutte; Leen Decin; Hans Olofsson; R. Lombaert; A. de Koter; Amanda I. Karakas; Stefanie N. Milam; Sofia Ramstedt; Richard J. Stancliffe; Ward Homan; M. Van De Sande
Isotopic ratios are by far the best diagnostic tracers of the stellar origin of elements, as they are very sensitive to the precise conditions in the nuclear burning regions. They allow us to give direct constraints on stellar evolution models and on the progenitor mass. However, up to now different isotopic ratios have been well constrained for only a handful of Asymptotic Giant Branch (AGB) stars. We present new data on isotopologue lines of a well-selected sample of AGB stars, covering the three spectral classes of C-, S- and M-type stars. We report on the first efforts made in determining accurate isotopologue fractions, focusing on oxygen isotopes which are a crucial tracer of the poorly constrained extra mixing processes in stellar atmospheres.
Astronomy and Astrophysics | 2017
Leen Decin; A. M. S. Richards; L. B. F. M. Waters; Taissa Danilovich; D. Gobrecht; T. Khouri; Ward Homan; J. M. Bakker; M. Van De Sande; Joseph A. Nuth; Elvire De Beck
Context. The condensation of inorganic dust grains in the winds of evolved stars is poorly understood. As of today, it is not yet known which molecular clusters form the first dust grains in oxygen-rich (C/O 34) can be the potential agents of the broad 11 mu m feature in the SED and in the interferometric data and we propose potential formation mechanisms for these large clusters.Context. The condensation of inorganic dust grains in the winds of evolved stars is poorly understood. As of today, it is not yet known which (clusters of) molecular gas-phase species form the first dust grains in oxygen-rich (C/O<1) Asymptotic Giant Branch (AGB) winds. Aluminium oxides and iron-free silicates are often put forward as promising candidates for the first dust seeds. Aims. We aim to constrain the dust formation histories in the winds of oxygen-rich AGB stars. Methods. We have obtained ALMA observations with a spatial resolution of 120 × 150 mas tracing the dust formation region of a low mass-loss rate and a high mass-loss rate AGB star, respectively being R Dor and IK Tau. Emission line profiles of AlO, AlOH and AlCl are detected in the ALMA data and are used to derive a lower limit of atomic aluminium incorporated in molecules. This constrains the aluminium budget that can condense into grains. Results. Radiative transfer models constrain the fractional abundances of AlO, AlOH, and AlCl in IK Tau and R Dor. We show that the gas-phase aluminium chemistry is completely different in both stars, with a remarkable difference in the AlO and AlOH abundance stratification. The amount of aluminium locked up in these 3 molecules is small, ≤1.1×10−7, for both stars, i.e. only ≤2% of the total aluminium budget. A fundamental result is that AlO and AlOH, being the direct precursors of alumina grains, are detected well beyond the onset of the dust condensation proving that the aluminium oxide condensation cycle is not fully efficient. The ALMA observations allow us to quantitatively assess the current generation of theoretical dynamical-chemical models for AGB winds. We discuss how the current proposed scenario of aluminium dust condensation for low mass-loss rate AGB stars at a distance of∼1.5 R?, in particular for the stars R Dor and W Hya, poses a challenge if one wishes to explain both the dust spectral features in the spectral energy distribution (SED), in interferometric data, and in polarized light signal. In particular, the estimated grain temperature of Al2O3 is too high for the grains to retain their amorphous structure. We propose that large gas-phase (Al2O3)n-clusters (n > 34) can be the potential agents of the broad 11μm feature in the SED and in the interferometric data and we explain how these large clusters can be formed. Conclusions. The ALMA data provide us with an excellent diagnostic tool to study the gaseous precursors of the first grains in AGB winds. The observations enable us to constrain theoretical wind models and to refine our knowledge of the chemical sequence followed by aluminium species when going through the phase transition from gaseous to solid-state species. Aluminium-bearing molecules only lock up ∼2% of aluminium in the inner wind of IK Tau and R Dor. If the rest of aluminium would form solid-state dust species, there remain challenges to explain different sets of observational data. We hypothesize that large gas-phase (Al2O3)nclusters (n > 34) are the carrier of the broad 11μm feature which is prominently visible in the SED of low mass-loss rate O-rich AGB stars.
Astronomy and Astrophysics | 2015
Ward Homan; Leen Decin; A. de Koter; A. J. van Marle; R. Lombaert; Wouter Vlemmings
Context. Recent high-resolution observations have shown that stellar winds harbour complexities that strongly deviate from spherical symmetry, which generally is assumed as standard wind model. One such morphology is the Archimedean spiral, which is generally believed to be formed by binary interactions, as has been directly observed in multiple sources. Aims. We seek to investigate the manifestation in the observables of spiral structures embedded in the spherical outflows of cool stars. We aim to provide an intuitive bedrock with which upcoming ALMA data can be compared and interpreted. Methods. By means of an extended parameter study, we modelled rotational CO emission from the stellar outflow of asymptotic giant branch stars. To this end, we developed a simplified analytical parametrised description of a 3D spiral structure. This model is embedded into a spherical wind and fed into the 3D radiative transfer code LIME, which produces 3D intensity maps throughout velocity space. Subsequently, we investigated the spectral signature of rotational transitions of CO in the models, as well as the spatial aspect of this emission by means of wide-slit position-velocity (PV) diagrams. Additionally, we quantified the potential for misinterpreting the 3D data in a 1D context. Finally, we simulated ALMA observations to explore the effect of interferometric noise and artefacts on the emission signatures. Results. The spectral signatures of the CO rotational transition v = 0 J = 3-2 are very efficient at concealing the dual nature of the outflow. Only a select few parameter combinations allow for the spectral lines to disclose the presence of the spiral structure. If the spiral cannot be distinguished from the spherical signal, this might result in an incorrect interpretation in a 1D context. Consequently, erroneous mass-loss rates would be calculated. The magnitude of these errors is mainly confined to a factor of a few, but in extreme cases can exceed an order of magnitude. CO transitions of different rotationally excited levels show a characteristical evolution in their line shape that can be brought about by an embedded spiral structure. However, if spatial information on the source is also available, the use of wide-slit PV diagrams systematically expose the embedded spiral. The PV diagrams also readily provide most of the geometrical and physical properties of the spiral-harbouring wind. Simulations of ALMA observations prove that the choice of antenna configuration is strongly dependent on the geometrical properties of the spiral. We conclude that exploratory endeavours should observe the object of interest with a range of different maximum-baseline configurations.
Astronomy and Astrophysics | 2018
M. Van De Sande; Leen Decin; R. Lombaert; T. Khouri; A. de Koter; F. Wyrowski; R. De Nutte; Ward Homan
Context. The stellar outflows of low- to intermediate-mass stars are characterised by a rich chemistry. Condensation of molecular gas species into dust grains is a key component in a chain of physical processes that leads to the onset of a stellar wind. In order to improve our understanding of the coupling between the micro-scale chemistry and macro-scale dynamics, we need to retrieve the abundance of molecules throughout the outflow. Aims. Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. SiO is thought to play an essential role in the dust-formation process of oxygen-rich AGB stars. The presence of HCN in an oxygen-rich environment is thought to be due to non-equilibrium chemistry in the inner wind. Methods. We analysed molecular transitions of CO, SiO, and HCN measured with the APEX telescope and all three instruments on the Herschel Space Observatory, together with data available in the literature. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. Results. We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the stellar outflow probed by our molecular data. For SiO, we find that the initial abundance lies between 5.5 × 10 -5 and 6.0 × 10 -5 with respect to H 2 . The abundance profile is constant up to 60 ± 10 R, after which it declines following a Gaussian profile with an e-folding radius of 3.5 ± 0.5 × 10 13 cm or 1.4 ± 0.2 R. For HCN, we find an initial abundance of 5.0 × 10 -7 with respect to H 2 . The Gaussian profile that describes the decline starts at the stellar surface and has an e-folding radius r e of 1.85 ± 0.05 × 10 15 cm or 74 ± 2 R. Conclusions. We cannot unambiguously identify the mechanism by which SiO is destroyed at 60 ± 10 R. The initial abundances found are higher than previously determined (except for one previous study on SiO), which might be due to the inclusion of higher-J transitions. The difference in abundance for SiO and HCN compared to high mass-loss rate Mira star IK Tau might be due to different pulsation characteristics of the central star and/or a difference in dust condensation physics.
Astronomy and Astrophysics | 2017
Ward Homan; A. M. S. Richards; Leen Decin; P. Kervella; Alex de Koter; I. McDonald; Keiichi Ohnaka
The circumstellar environment of the AGB star L2 Puppis was observed with ALMA in cycle 3, with a resolution of 15 × 18 mas. The molecular emission shows a differentially rotating disk, inclined to a nearly edge-on position. In the first paper in this series (Paper I) the molecular emission was analysed to accurately deduce the motion of the gas in the equatorial regions of the disk. In this work we model the optically thick 12 CO J = 3−2 and the optically thin 13 CO J = 3−2 rotational transition to constrain the physical conditions in the disk. To realise this effort we make use of the 3D NLTE radiative transfer code LIME. The temperature structure and velocity structure show a high degree of complexity, both radially and vertically. The radial H2 density profile in the disk plane is characterised by a power law with a slope of −3.1. We find a 12 CO over 13 CO abundance ratio of 10 inside the disk. Finally, estimations of the angular momentum in the disk surpass the expected available angular momentum of the star, strongly supporting the indirect detection of a compact binary companion reported in Paper I. We estimate the mass of the companion to be around 1 Jupiter mass.
Astronomy and Astrophysics | 2016
Leen Decin; A. M. S. Richards; T. J. Millar; Alain Baudry; E. De Beck; Ward Homan; Nathan Smith; M. Van De Sande; Conor Walsh
Context. At the end of their lives, most stars lose a significant amount of mass through a stellar wind. The specific physical and chemical circumstances that lead to the onset of the stellar wind for cool luminous stars are not yet understood. Complex geometrical morphologies in the circumstellar envelopes prove that various dynamical and chemical processes are interlocked and that their relative contributions are not easy to disentangle. Aims. We aim to study the inner-wind structure (R< 250 R∗) of the well-known red supergiant VY CMa, the archetype for the class of luminous red supergiant stars experiencing high mass loss. Specifically, the objective is to unravel the density structure in the inner envelope and to examine the chemical interaction between gas and dust species. Methods. We analyse high spatial resolution (∼0″.24 × 0″.13) ALMA science verification (SV) data in band 7, in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. Results. For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ∼50° measured from north to east. However, this picture cannot capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the refractory nature of this metal halide, this hints at a chemical process that prevents all NaCl from condensing onto dust grains. We show that in the case of the ratio of the surface binding temperature to the grain temperature being ∼50, only some 10% of NaCl remains in gaseous form while, for lower values of this ratio, thermal desorption efficiently evaporates NaCl. Photodesorption by stellar photons does not seem to be a viable explanation for the detection of gaseous NaCl at 220 R∗ from the central star, so instead, we propose shock-induced sputtering driven by localized mass ejection events as an alternative. Conclusions. The analysis of the NaCl lines demonstrates the capabilities of ALMA to decode the geometric morphologies and chemical pathways prevailing in the winds of evolved stars. These early ALMA results prove that the envelopes surrounding evolved stars are far from homogeneous, and that a variety of dynamical and chemical processes dictate the wind structure.
Astronomy and Astrophysics | 2018
Leen Decin; A. M. S. Richards; Taissa Danilovich; Ward Homan; Joseph A. Nuth
A spectral line and imaging survey of the low mass-loss rate AGB star R Dor (Mdot ~ 1e-7 Msun/yr) and the high mass-loss rate AGB star IK Tau (Mdot ~5e-6 Msun/yr) was made with ALMA between 335 and 362 GHz at a spatial resolution of ~150 mas, corresponding to the locus of the main dust formation region of both targets. Some 200 spectral features from 15 molecules (and their isotopologues) were observed, including rotational lines in both the ground and vibrationally excited states. Detected species include the gaseous precursors of dust grains such as SiO, AlO, AlOH, TiO, and TiO2. We present a spectral atlas for both stars and the parameters of all detected spectral features. A clear dichotomy for the sulphur chemistry is seen: while CS, SiS, SO, and SO2 are abundantly present in IK Tau, only SO and SO2 are detected in R Dor. Also other species such as NaCl, NS, AlO, and AlOH display a completely different behaviour. From some selected species, the minor isotopologues can be used to assess the isotopic ratios. The channel maps of many species prove that both large and small-scale inhomogeneities persist in the inner wind of both stars in the form of blobs, arcs, and/or a disk. The high sensitivity of ALMA allows us to spot the impact of these correlated density structures in the spectral line profiles. The spectral lines often display a half width at zero intensity much larger than expected from the terminal velocity, v_inf, previously derived for both objects (36 km/s versus v_inf ~17.7 km/s for IK Tau and 23 km/s versus v_inf ~5.5 km/s for R Dor). Both a more complex 3D morphology and a more forceful wind acceleration of the (underlying) isotropic wind can explain this trend. The formation of fractal grains in the region beyond ~400 mas can potentially account for the latter scenario. From the continuum map, we deduce a dust mass of ~3.7e-7 Msun for IK Tau and ~2e-8 Msun for R Dor.
Astronomy and Astrophysics | 2016
Ward Homan; Jels Boulangier; Leen Decin; A. de Koter
Context. Equatorial density enhancements (EDEs) are a very common astronomical phenomenon. Studies of the circumstellar environments (CSE) of young stellar objects and of evolved stars have shown that these objects often possess these features. These are believed to originate from different mechanisms, ranging from binary interactions to the gravitational collapse of interstellar material. Quantifying the effect of the presence of this type of EDE on the observables is essential for a correct interpretation of high-resolution data. Aims. We seek to investigate the manifestation in the observables of a circumstellar EDE, to assess which properties can be constrained, and to provide an intuitive bedrock on which to compare and interpret upcoming high-resolution data (e.g. ALMA data) using 3D models. Methods. We develop a simplified analytical parametrised description of a 3D EDE, with possible substructure such as warps, gaps, and spiral instabilities. In addition, different velocity fields (Keplerian, radial, super-Keplerian, sub-Keplerian and rigid rotation) are considered. The effect of a bipolar outflow is also investigated. The geometrical models are fed into the 3D radiative transfer code LIME, that produces 3D intensity maps throughout velocity space. We investigate the spectral signature of the J = 3−2 up to J = 7−6 rotational transitions of CO in the models, as well as the spatial aspect of this emission by means of channel maps, wide-slit position-velocity (PV) diagrams, stereograms, and spectral lines. Additionally, we discuss methods of constraining the geometry of the EDE, the inclination, the mass-contrast between the EDE and the bipolar outflow, and the global velocity field. Finally, we simulated ALMA observations to explore the effects of interferometric noise and artefacts on the emission signatures. Results. The effects of the different velocity fields are most evident in the PV diagrams. These diagrams also enable us to constrain the EDE height and inclination. A level of degeneracy may occur in the shapes of individual PV diagrams for different global velocity fields. The orthogonal PV diagrams may completely eliminate this ambiguity. Information on the EDE substructure is evident in the channel maps, but cannot be recovered from the PV diagrams, nor from the spectral lines. However, stereograms enable the detection of warping. For most inclinations the spectral lines are relatively broad, making it difficult to distinguish from an eventual superposed bipolar outflow component. Only under low inclination angles can one distinguish between these structures. Simulations of synthetic ALMA observations show how emission is affected when the largest angular scale of an antenna configuration is exceeded. For a rotating EDE, the emission around zero velocity will first fade because of destructive interference.
Astronomy and Astrophysics | 2018
M. Van De Sande; Jon O. Sundqvist; T. J. Millar; D. Keller; Ward Homan; A. de Koter; Leen Decin; F. De Ceuster
(abridged) In the inner regions of AGB outflows, several molecules have been detected with abundances much higher than those predicted from thermodynamic equilibrium (TE) chemical models. The presence of the majority of these species can be explained by shock-induced non-TE chemical models, where shocks caused by the pulsating star take the chemistry out of TE in the inner region. Moreover, a non-uniform density structure has been detected in several AGB outflows. A detailed parameter study on the quantitative effects of a non-homogeneous outflow has so far not been performed. We implement a porosity formalism for treating the increased leakage of light associated with radiation transport through a clumpy, porous medium. The effects from the altered UV radiation field penetration on the chemistry, accounting also for the increased reaction rates of two-body processes in the overdense clumps, are examined. We present a parameter study of the effect of clumping and porosity on the chemistry throughout the outflow. Both the higher density within the clumps and the increased UV radiation field penetration have an important impact on the chemistry, as they both alter the chemical pathways. The increased amount of UV radiation in the inner region leads to photodissociation of parent species, releasing the otherwise deficient elements. We find an increased abundance in the inner region of all species not expected to be present assuming TE chemistry, such as HCN in O-rich outflows, H