Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Warren D. Sharp is active.

Publication


Featured researches published by Warren D. Sharp.


Nature | 2005

Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil

Francisco W. Cruz; Stephen J. Burns; Ivo Karmann; Warren D. Sharp; Mathias Vuille; Andrea de Oliveira Cardoso; José Antonio Ferrari; Pedro L. Silva Dias; Oduvaldo Viana

During the last glacial period, large millennial-scale temperature oscillations—the ‘Dansgaard/Oeschger’ cycles—were the primary climate signal in Northern Hemisphere climate archives from the high latitudes to the tropics. But whether the influence of these abrupt climate changes extended to the tropical and subtropical Southern Hemisphere, where changes in insolation are thought to be the main direct forcing of climate, has remained unclear. Here we present a high-resolution oxygen isotope record of a U/Th-dated stalagmite from subtropical southern Brazil, covering the past 116,200 years. The oxygen isotope signature varies with shifts in the source region and amount of rainfall in the area, and hence records changes in atmospheric circulation and convective intensity over South America. We find that these variations in rainfall source and amount are primarily driven by summer solar radiation, which is controlled by the Earths precessional cycle. The Dansgaard/Oeschger cycles can be detected in our record and therefore we confirm that they also affect the tropical hydrological cycle, but that in southern subtropical Brazil, millennial-scale climate changes are not as dominant as they are in the Northern Hemisphere.


Geology | 1994

Intercalibration of astronomical and radioisotopic time

Paul R. Renne; Alan L. Deino; Robert C. Walter; Brent D. Turrin; Carl C. Swisher; Tim A. Becker; Garniss H. Curtis; Warren D. Sharp; Abdur-Rahim Jaouni

The 40Ar/39Ar radioisotopic dating technique is one of the most precise and versatile methods available for dating events in Earths history, but the accuracy of this method is limited by the accuracy with which the ages of neutron-fluence monitors (dating standards) are known. Calibrating the ages of standards by conventional means has proved difficult and contentious. The emerging astronomically calibrated geomagnetic polarity time scale (APTS) offers a means to calibrate the ages of 40Ar/39Ar dating standards that is independent of absolute isotopic abundance measurements. Seven published 40Ar/39Ar dates for polarity transitions, nominally ranging from 0.78 to 3.40 Ma, are based on the Fish Canyon sanidine standard and can be compared with APTS predictions. Solving the 40Ar/39Ar age equation for the age of the Fish Canyon sanidine that produces coincidence with the APTS age for each of these seven reversals yields mutually indistinguishable estimates ranging from 27.78 to 28.09 Ma, with an inverse variance-weighted mean of 27.95 ± 0.18 Ma. Normalized residuals are minimized at an age of 27.92 Ma, indicating the robustness of the solution.


Science | 2006

50-Ma Initiation of Hawaiian-Emperor Bend Records Major Change in Pacific Plate Motion

Warren D. Sharp; David A. Clague

The Hawaiian-Emperor bend has played a prominent yet controversial role in deciphering past Pacific plate motions and the tempo of plate motion change. New ages for volcanoes of the central and southern Emperor chain define large changes in volcanic migration rate with little associated change in the chains trend, which suggests that the bend did not form by slowing of the Hawaiian hot spot. Initiation of the bend near Kimmei seamount about 50 million years ago (MA) was coincident with realignment of Pacific spreading centers and early magmatism in western Pacific arcs, consistent with formation of the bend by changed Pacific plate motion.


Science | 2014

Neandertal roots: Cranial and chronological evidence from Sima de los Huesos

Juan Luis Arsuaga; Ignacio Martínez; Lee J. Arnold; Arantza Aranburu; Ana Gracia-Téllez; Warren D. Sharp; Rolf Quam; Christophe Falguères; Ana Pantoja-Pérez; James L. Bischoff; Eva María Poza-Rey; J.M. Parés; José-Miguel Carretero; Martina Demuro; Carlos Lorenzo; Nohemi Sala; María Martinón-Torres; Nuria García; A. Alcázar de Velasco; Gloria Cuenca-Bescós; Asier Gómez-Olivencia; D. Moreno; Adrián Pablos; Chuan-Chou Shen; Laura Rodríguez; Ana Ortega; R. García; Alejandro Bonmatí; J.M. Bermúdez de Castro; E. Carbonell

Neandertal ancestors from Pleistocene Spain The Sima de los Huesos site in Atapuerca, northern Spain, is a rich source of fossil hominin specimens. The site has now yielded further skull specimens that illuminate patterns of human evolution in Europe nearly half a million years ago. Arsuaga et al. studied 17 crania, including 7 that are new specimens and 6 that are more complete than before (see the Perspective by Hublin). This assemblage of specimens reveals the cranial, facial, and dental features of the Atapuerca hominins, which allows more precise evolutionary positioning of these Neandertal ancestors. Science, this issue p. 1358; see also p. 1338 Seventeen skulls from at least 430 thousand years ago illuminate hominin evolutionary patterns in Pleistocene Europe. [Also see Perspective by Hublin] Seventeen Middle Pleistocene crania from the Sima de los Huesos site (Atapuerca, Spain) are analyzed, including seven new specimens. This sample makes it possible to thoroughly characterize a Middle Pleistocene hominin paleodeme and to address hypotheses about the origin and evolution of the Neandertals. Using a variety of techniques, the hominin-bearing layer could be reassigned to a period around 430,000 years ago. The sample shows a consistent morphological pattern with derived Neandertal features present in the face and anterior vault, many of which are related to the masticatory apparatus. This suggests that facial modification was the first step in the evolution of the Neandertal lineage, pointing to a mosaic pattern of evolution, with different anatomical and functional modules evolving at different rates.


Geological Society of America Bulletin | 1997

Stratigraphy and chronology of Upper Cretaceous–lower Paleogene strata in Bolivia and northwest Argentina

Thierry Sempere; Robert F. Butler; David R. Richards; L.G. Marshall; Warren D. Sharp; Carl C. Swisher

Integration of sequence stratigraphy, magnetostratigraphy, Ar/Ar dating, and paleontology considerably advances knowledge of the Late Cretaceous–early Paleogene chronostratigraphy and tectonic evolution of Bolivia and adjacent areas. The partly restricted marine El Molino Formation spans the Maastrichtian and Danian (°73–60.0 Ma). Deposition of the alluvial to lacustrine Santa Lucia Formation occurred between 60.0 and 58.2 Ma. The widespread erosional unconformity at the base of the Cayara Formation is 58.2 Ma. This unconformity separates the Upper Puca and Corocoro supersequences in Bolivia, and is thus coeval with the Zuni-Tejas sequence boundary of North America. The thick overlying Potoco and Camargo formations represent a late Paleocene–Oligocene foreland fill. The onset of shortening along the Pacific margin at °89 Ma initially produced rifting in the distal foreland. Santonian–Campanian eastward-onlapping deposits indicate subsequent waning of tectonic activity along the margin. Significant tectonism and magmatism resumed along the margin at °73 Ma and produced an abrupt increase in subsidence rate and other related phenomena in the basin. Subsidence was maximum between °71 and °66 Ma. Due to the early Maastrichtian global sea-level high, marine waters ingressed from the northwest into this underfilled basin. Subsidence decreased during the Late Maastrichtian and was low during the Danian. It increased again in the latest Danian, for which a slight transgression is recorded, and peaked in the early Selandian. Tectonism between 59.5 and 58.2 Ma produced a variety of deformational and sedimentary effects in the basin and correlates with the end of emplacement of the Coastal batholith. The subsequent 58.2 Ma major unconformity marks the onset of continental foreland basin development, which extended into Andean Bolivia during the late Paleocene–Oligocene interval. This basin underwent internal deformation as early as Eocene time in the Altiplano and Cordillera Oriental. These early structures, previously assigned to the late Oligocene–early Miocene orogeny, probably accommodated observed tectonic rotations in the Eocene–Oligocene.


Quaternary Research | 2003

Dating fluvial terraces by 230Th/U on pedogenic carbonate, Wind River Basin, Wyoming

Warren D. Sharp; Kenneth R. Ludwig; Oliver A. Chadwick; Ronald Amundson; Laura L Glaser

Abstract Reliable and precise ages of Quaternary pedogenic carbonate can be obtained with 230Th/U dating by thermal ionization mass spectrometry applied to carefully selected milligram-size samples. Datable carbonate can form within a few thousand years of surface stabilization allowing ages of Quaternary deposits and surfaces to be closely estimated. Pedogenic carbonate clast-rinds from gravels of glacio-fluvial terraces in the Wind River Basin have median concentrations of 14 ppm U and 0.07 ppm 232Th, with median (230Th/232Th) = 270, making them well suited for 230Th/U dating. Horizons as thin as 0.5 mm were sampled from polished slabs to reduce averaging of long (≥105 yr), and sometimes visibly discontinuous, depositional histories. Dense, translucent samples with finite 230Th/U ages preserve within-rind stratigraphic order in all cases. Ages for terraces WR4 (167,000 ± 6,400 yr) and WR2 (55,000 ± 8600 yr) indicate a mean incision rate of 0.26 ± 0.05 m per thousand years for the Wind River over the past glacial cycle, slower than inferred from cosmogenic-nuclide dating. Terrace WR3, which formed penecontemporaneously with the final maximum glacial advance of the penultimate Rocky Mountain (Bull Lake) glaciation, has an age of 150,000 ± 8300 yr indicating that it is broadly synchronous with the penultimate global ice volume maximum.


Journal of Geophysical Research | 1996

The 40Ar/39Ar and K/Ar dating of lavas from the Hilo 1-km core hole, Hawaii Scientific Drilling Project

Warren D. Sharp; B. D. Turrin; Paul R. Renne; Marvin A. Lanphere

Mauna Kea lava flows cored in the Hilo hole range in age from <200 ka to about 400 ka based on 40Ar/39Ar incremental heating and K-Ar analyses of 16 groundmass samples and one coexisting plagioclase. The lavas, all subaerially deposited, include a lower section consisting only of tholeiitic basalts and an upper section of interbedded alkalic, transitional tholeiitic, and tholeiitic basalts. The lower section has yielded predominantly complex, discordant 40Ar/39Ar age spectra that result from mobility of 40Ar and perhaps K, the presence of excess 40Ar, and redistribution of 39Ar by recoil. Comparison of K-Ar ages with 40Ar/39Ar integrated ages indicates that some of these samples have also lost 39Ar. Nevertheless, two plateau ages of 391 ± 40 and 400 ± 26 ka from deep in the hole, combined with data from the upper section, show that the tholeiitic section accumulated at an average rate of about 7 to 8 m/kyr and has a mean recurrence interval of 0.5 kyr/flow unit. Samples from the upper section yield relatively precise 40Ar/39Ar plateau and isotope correlation ages of 326 ± 23, 241 ± 5, 232 ± 4, and 199 ± 9 ka for depths of −415.7 m to −299.2 m. Within their uncertainty, these ages define a linear relationship with depth, with an average accumulation rate of 0.9 m/kyr and an average recurrence interval of 4.8 kyr/flow unit. The top of the Mauna Kea sequence at −280 m must be older than the plateau age of 132 ± 32 ka, obtained for the basal Mauna Loa flow in the corehole. The upward decrease in lava accumulation rate is a consequence of the decreasing magma supply available to Mauna Kea as it rode the Pacific plate away from its magma source, the Hawaiian mantle plume. The age-depth relation in the core hole may be used to test and refine models that relate the growth of Mauna Kea to the thermal and compositional structure of the mantle plume.


Earth and Planetary Science Letters | 1998

Provenance of Heinrich layers in core V28-82, northeastern Atlantic: 40Ar/39Ar ages of ice-rafted hornblende, Pb isotopes in feldspar grains, and Nd–Sr–Pb isotopes in the fine sediment fraction

Sidney R. Hemming; Wally Broecker; Warren D. Sharp; Gerard C. Bond; Roberto H. Gwiazda; Jerry F. McManus; M. Klas; Irka Hajdas

Abstract Several correlatable layers of sediment, rich in ice rafted grains, have been documented in the North Atlantic. The most notable within the last glacial cycle are the Heinrich layers, layers extremely rich in ice rafted detritus and generally barren of foraminifera within the North Atlantic ice rafted detritus (IRD) belt. The view of these layers is that they represent events where great armadas of icebergs were launched into the North Atlantic. The importance of the Heinrich layers lies in their connection with abrupt climate change in the North Atlantic, and perhaps globally. There is a growing number of published provenance studies of the Heinrich layers in the North Atlantic, based on a variety of methods. However, there is little overlap of methods applied to the same samples. In this contribution, we present a multi-component provenance study of Heinrich layers H1, H2, H4 and H5 from core V28-82 in the eastern North Atlantic. Our results indicate that virtually the entire inventory of terrigenous clastic detritus in Heinrich layers H2, H4 and H5 came from ancient continental sources surrounding the Labrador Sea. Although Heinrich layer H1 is similar in many respects, it appears to have some significant differences relative to the other three.


Geological Society of America Bulletin | 2010

Uncertainties in slip-rate estimates for the Mission Creek strand of the southern San Andreas fault at Biskra Palms Oasis, southern California

Whitney M. Behr; Dylan H. Rood; Kathryn E. K. Fletcher; N. Guzman; Robert C. Finkel; Thomas C. Hanks; Kenneth W. Hudnut; Katherine J. Kendrick; John P. Platt; Warren D. Sharp; Ray J. Weldon; J.D. Yule

This study focuses on uncertainties in estimates of the geologic slip rate along the Mission Creek strand of the southern San Andreas fault where it offsets an alluvial fan (T2) at Biskra Palms Oasis in southern California. We provide new estimates of the amount of fault offset of the T2 fan based on trench excavations and new cosmogenic 10Be age determinations from the tops of 12 boulders on the fan surface. We present three alternative fan offset models: a minimum, a maximum, and a preferred offset of 660 m, 980 m, and 770 m, respectively. We assign an age of between 45 and 54 ka to the T2 fan from the 10Be data, which is significantly older than previously reported but is consistent with both the degree of soil development associated with this surface, and with ages from U-series geochronology on pedogenic carbonate from T2, described in a companion paper by Fletcher et al. (this volume). These new constraints suggest a range of slip rates between ∼12 and 22 mm/yr with a preferred estimate of ∼14–17 mm/yr for the Mission Creek strand of the southern San Andreas fault. Previous studies suggested that the geologic and geodetic slip-rate estimates at Biskra Palms differed. We find, however, that considerable uncertainty affects both the geologic and geodetic slip-rate estimates, such that if a real discrepancy between these rates exists for the southern San Andreas fault at Biskra Palms, it cannot be demonstrated with available data.


Geology | 2002

Differential incision of the Grand Canyon related to Quaternary faulting—Constraints from U-series and Ar/Ar dating

Joel L. Pederson; Karl E. Karlstrom; Warren D. Sharp; William C. McIntosh

Incision of the Colorado River in the Grand Canyon, widely thought to have happened between ca. 6 and 1.2 Ma, has continued at variable rates along the canyon over the past ;500 k.y., based on measurements of bedrock incision combined with U-series and 40 Ar/ 39 Ar ages. River incision rates downstream of the Toroweap fault in the western Grand Canyon are about half the ;140 m/m.y. incision rate calculated for a distance of at least 200 km upstream of the fault. We hypothesize that this differential incision is due to westdown slip on the Toroweap fault of 94 6 6 m/m.y. based on measured offset of the newly dated Upper Prospect basalt flow, which is the major middle-late Quaternary slip evident along the river. Regional incision has been driven mostly by base-level fall related to drainage reversal off the Colorado Plateau ca. 6 Ma. Because local normal faulting is lower in rate than this regional incision and is likely an expression of Basin and Range extension and subsidence rather than uplift, this is a case where active faulting diminishes, but does not drive, incision. Quaternary incision rates are insufficient to have carved the Grand Canyon in 6 m.y., suggesting either that rates have decreased through time as the original base-level signal has attenuated, or that some component of the canyon relief we see today existed prior to Colorado River integration.

Collaboration


Dive into the Warren D. Sharp's collaboration.

Top Co-Authors

Avatar

Paul R. Renne

Berkeley Geochronology Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Clague

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine J. Kendrick

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge