Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Warunya Panmanee is active.

Publication


Featured researches published by Warunya Panmanee.


Nucleic Acids Research | 2012

Global regulation of gene expression by OxyR in an important human opportunistic pathogen

Qing Wei; Phu Nguyen Le Minh; Andreas Dötsch; Falk Hildebrand; Warunya Panmanee; Ameer Elfarash; Sebastian Schulz; Stéphane Plaisance; Daniel Charlier; Daniel J. Hassett; Susanne Häussler; Pierre Cornelis

Most bacteria control oxidative stress through the H2O2-responsive transactivator OxyR, a member of the LTTR family (LysR Type Transcriptional Regulators), which activates the expression of defensive genes such as those encoding catalases, alkyl hydroperoxide reductases and superoxide dismutases. In the human opportunistic pathogen Pseudomonas aeruginosa, OxyR positively regulates expression of the oxidative stress response genes katA, katB, ahpB and ahpCF. To identify additional targets of OxyR in P. aeruginosa PAO1, we performed chromatin immunoprecipitation in combination with whole genome tiling array analyses (ChIP-chip). We detected 56 genes including all the previously identified defensive genes and a battery of novel direct targets of OxyR. Electrophoretic mobility shift assays (EMSAs) for selected newly identified targets indicated that ∼70% of those were bound by purified oxidized OxyR and their regulation was confirmed by quantitative real-time polymerase chain reaction. Furthermore, a thioredoxin system was identified to enzymatically reduce OxyR under oxidative stress. Functional classification analysis showed that OxyR controls a core regulon of oxidative stress defensive genes, and other genes involved in regulation of iron homeostasis (pvdS), quorum-sensing (rsaL), protein synthesis (rpsL) and oxidative phosphorylation (cyoA and snr1). Collectively, our results indicate that OxyR is involved in oxidative stress defense and regulates other aspects of cellular metabolism as well.


Antimicrobial Agents and Chemotherapy | 2010

Sodium Nitrite-Mediated Killing of the Major Cystic Fibrosis Pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia under Anaerobic Planktonic and Biofilm Conditions

Tiffany A. Major; Warunya Panmanee; Joel E. Mortensen; Larry D. Gray; Niel Hoglen; Daniel J. Hassett

ABSTRACT A hallmark of airways in patients with cystic fibrosis (CF) is highly refractory, chronic infections by several opportunistic bacterial pathogens. A recent study demonstrated that acidified sodium nitrite (A-NO2−) killed the highly refractory mucoid form of Pseudomonas aeruginosa, a pathogen that significantly compromises lung function in CF patients (S. S. Yoon et al., J. Clin. Invest. 116:436-446, 2006). Therefore, the microbicidal activity of A-NO2− (pH 6.5) against the following three major CF pathogens was assessed: P. aeruginosa (a mucoid, mucA22 mutant and a sequenced nonmucoid strain, PAO1), Staphylococcus aureus USA300 (methicillin resistant), and Burkholderia cepacia, a notoriously antibiotic-resistant organism. Under planktonic, anaerobic conditions, growth of all strains except for P. aeruginosa PAO1 was inhibited by 7.24 mM (512 μg ml−1 NO2−). B. cepacia was particularly sensitive to low concentrations of A-NO2− (1.81 mM) under planktonic conditions. In antibiotic-resistant communities known as biofilms, which are reminiscent of end-stage CF airway disease, A-NO2− killed mucoid P. aeruginosa, S. aureus, and B. cepacia; 1 to 2 logs of cells were killed after a 2-day incubation with a single dose of ∼15 mM A-NO2−. Animal toxicology and phase I human trials indicate that these bactericidal levels of A-NO2− can be easily attained by aerosolization. Thus, in summary, we demonstrate that A-NO2− is very effective at killing these important CF pathogens and could be effective in other infectious settings, particularly under anaerobic conditions where bacterial defenses against the reduction product of A-NO2−, nitric oxide (NO), are dramatically reduced.


FEMS Microbiology Ecology | 2013

Pseudomonas aeruginosa inactivation mechanism is affected by capsular extracellular polymeric substances reactivity with chlorine and monochloramine.

Zheng Xue; Christopher M. Hessler; Warunya Panmanee; Daniel J. Hassett; Youngwoo Seo

The reactivity of capsular extracellular polymeric substances (EPS) to chlorine and monochloramine was assessed and compared in this study. The impact of capsular EPS on Gram-negative bacteria Pseudomonas aeruginosa inactivation mechanisms was investigated both qualitatively and quantitatively using a combination of batch experiments, viability tests with LIVE/DEAD staining, and Fourier transform infrared spectroscopy (FTIR). Both wild-type and isogenic mutant strains with different alginate EPS production capabilities were used to evaluate their susceptibility to chlorine and monochloramine. The mucA22 mutant strain, which overproduces the EPS composed largely of acidic polysaccharide alginate, exhibited high resistance and prolonged inactivation time to both chlorine and monochloramine relative to PAO1 (wild-type) and algT(U) mutant strains (alginate EPS deficient). Multiple analyses were combined to better understand the mechanistic role of EPS against chlorine-based disinfectants. The extracted EPS exhibited high reactivity with chlorine and very low reactivity with monochloramine, suggesting different mechanism of protection against disinfectants. Moreover, capsular EPS on cell membrane appeared to reduce membrane permeabilization by disinfectants as suggested by deformation of key functional groups in EPS and cell membrane (the C-O-C stretching of carbohydrate and the C=O stretching of ester group). The combined results supported that capsular EPS, acting either as a disinfectant consumer (for chlorine inactivation) or limiting access to reactive sites on cell membrane (for monochloramine inactivation), provide a protective role for bacterial cells against regulatory residual disinfectants by reducing membrane permeabilization.


PLOS Pathogens | 2014

BdlA, DipA and Induced Dispersion Contribute to Acute Virulence and Chronic Persistence of Pseudomonas aeruginosa

Yi Li; Olga E. Petrova; Shengchang Su; Gee W. Lau; Warunya Panmanee; Renuka Na; Daniel J. Hassett; David G. Davies; Karin Sauer

The human pathogen Pseudomonas aeruginosa is capable of causing both acute and chronic infections. Differences in virulence are attributable to the mode of growth: bacteria growing planktonically cause acute infections, while bacteria growing in matrix-enclosed aggregates known as biofilms are associated with chronic, persistent infections. While the contribution of the planktonic and biofilm modes of growth to virulence is now widely accepted, little is known about the role of dispersion in virulence, the active process by which biofilm bacteria switch back to the planktonic mode of growth. Here, we demonstrate that P. aeruginosa dispersed cells display a virulence phenotype distinct from those of planktonic and biofilm cells. While the highest activity of cytotoxic and degradative enzymes capable of breaking down polymeric matrix components was detected in supernatants of planktonic cells, the enzymatic activity of dispersed cell supernatants was similar to that of biofilm supernatants. Supernatants of non-dispersing ΔbdlA biofilms were characterized by a lack of many of the degradative activities. Expression of genes contributing to the virulence of P. aeruginosa was nearly 30-fold reduced in biofilm cells relative to planktonic cells. Gene expression analysis indicated dispersed cells, while dispersing from a biofilm and returning to the single cell lifestyle, to be distinct from both biofilm and planktonic cells, with virulence transcript levels being reduced up to 150-fold compared to planktonic cells. In contrast, virulence gene transcript levels were significantly increased in non-dispersing ΔbdlA and ΔdipA biofilms compared to wild-type planktonic cells. Despite this, bdlA and dipA inactivation, resulting in an inability to disperse in vitro, correlated with reduced pathogenicity and competitiveness in cross-phylum acute virulence models. In contrast, bdlA inactivation rendered P. aeruginosa more persistent upon chronic colonization of the murine lung, overall indicating that dispersion may contribute to both acute and chronic infections.


Fems Microbiology Letters | 2009

Differential roles of OxyR-controlled antioxidant enzymes alkyl hydroperoxide reductase (AhpCF) and catalase (KatB) in the protection of Pseudomonas aeruginosa against hydrogen peroxide in biofilm vs. planktonic culture

Warunya Panmanee; Daniel J. Hassett

The role of the Pseudomonas aeruginosa OxyR-controlled antioxidants alkyl hydroperoxide reductase CF (AhpCF) and catalase B (KatB) was evaluated in biofilm vs. planktonic culture upon exposure to hydrogen peroxide. AhpCF was found to be critical for survival of biofilm bacteria while KatB was more important for survival of planktonic free-swimming organisms.


Journal of Bacteriology | 2008

The Peptidoglycan-Associated Lipoprotein OprL Helps Protect a Pseudomonas aeruginosa Mutant Devoid of the Transactivator OxyR from Hydrogen Peroxide-Mediated Killing during Planktonic and Biofilm Culture

Warunya Panmanee; Francisco Gomez; David P. Witte; Vijay Pancholi; Bradley E. Britigan; Daniel J. Hassett

OxyR controls H(2)O(2)-dependent gene expression in Pseudomonas aeruginosa. Without OxyR, diluted (<10(7)/ml) organisms are easily killed by micromolar H(2)O(2). The goal of this study was to define proteins that contribute to oxyR mutant survival in the presence of H(2)O(2). We identified proteins in an oxyR mutant that were oxidized by using 2,4-dinitrophenylhydrazine for protein carbonyl detection, followed by identification using a two-dimensional gel/matrix-assisted laser desorption ionization-time of flight approach. Among these was the peptidoglycan-associated lipoprotein, OprL. A double oxyR oprL mutant was constructed and was found to be more sensitive to H(2)O(2) than the oxyR mutant. Provision of the OxyR-regulated alkyl hydroperoxide reductase, AhpCF, but not AhpB or the catalase, KatB, helped protect this strain against H(2)O(2). Given the sensitivity of oxyR oprL bacteria to planktonic H(2)O(2), we next tested the hypothesis that the biofilm mode of growth might protect such organisms from H(2)O(2)-mediated killing. Surprisingly, biofilm-grown oxyR oprL mutants, which (in contrast to planktonic cells) possessed no differences in catalase activity compared to the oxyR mutant, were sensitive to killing by as little as 0.5 mM H(2)O(2). Transmission electron microscopy studies revealed that the integrity of both cytoplasmic and outer membranes of oxyR and oxyR oprL mutants were compromised. These studies suggest that sensitivity to the important physiological oxidant H(2)O(2) in the exquisitely sensitive oxyR mutant bacteria is based not only upon the presence and location of OxyR-controlled antioxidant enzymes such as AhpCF but also on structural reinforcement by the peptidoglycan-associated lipoprotein OprL, especially during growth in biofilms.


Journal of Biomolecular Screening | 2013

High-Throughput Screening for Small-Molecule Inhibitors of Staphylococcus epidermidis RP62a Biofilms

Warunya Panmanee; Deborah Taylor; Chloe Ja Shea; Hong Tang; Sandra Nelson; William Seibel; Ruben Papoian; Ryan M. Kramer; Daniel J. Hassett; Thomas J. Lamkin

High-throughput screening (HTS) of 42 865 compounds was performed to identify compounds that inhibit formation of or kill Staphylococcus epidermidis RP62a biofilms. Three biological processes were assayed, including (1) growth of planktonic/biofilm bacteria, (2) assessment of metabolically active biofilm bacteria using a resazurin assay, and (3) assessment of biofilm biomass by crystal violet staining. After completing the three tiers (primary screening, hit confirmation, and dose-response curves), 352 compounds (representing ~0.8%) were selected as confirmed hit compounds from the HTS assay. The compounds were divided into groups based on their effectiveness on S. epidermidis biofilm properties. The majority of these affected both inhibition and killing of bacterial biofilm cultures. Only 16 of the confirmed hit compounds that have either an AC50 lower than 10 µM and/or Sconst ≥70 from those processed were selected for further study by confocal laser scanning microscopy (CLSM). The CLSM was used to evaluate the confirmed hit compounds on (1) inhibition of biofilm formation and (2) killing of preexisting S. epidermidis biofilms. Taken together, with further testing (e.g., disease-related conditions), such compounds may have applications as broad antimicrobial/antibiofilm use for prophylactic or therapeutic intervention to combat infections in surgical and intensive care clinics and battlefield settings.


Frontiers in Microbiology | 2016

A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions

Cameron T. McDaniel; Shengchang Su; Warunya Panmanee; Gee W. Lau; Tristan Browne; Kevin Cox; Andrew T. Paul; Seung Hyun B. Ko; Joel E. Mortensen; Joseph S. Lam; Daniel A. Muruve; Daniel J. Hassett

Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains.


Journal of Industrial Microbiology & Biotechnology | 2018

Effect of impaired twitching motility and biofilm dispersion on performance of Pseudomonas aeruginosa -powered microbial fuel cells

Devesh Dadhich Shreeram; Warunya Panmanee; Cameron T. McDaniel; Susan Daniel; Dale W. Schaefer; Daniel J. Hassett

Pseudomonas aeruginosa is a metabolically voracious bacterium that is easily manipulated genetically. We have previously shown that the organism is also highly electrogenic in microbial fuel cells (MFCs). Polarization studies were performed in MFCs with wild-type strain PAO1 and three mutant strains (pilT, bdlA and pilT bdlA). The pilT mutant was hyperpiliated, while the bdlA mutant was suppressed in biofilm dispersion chemotaxis. The double pilT bdlA mutant was expected to have properties of both mutations. Polarization data indicate that the pilT mutant showed 5.0- and 3.2-fold increases in peak power compared to the wild type and the pilT bdlA mutant, respectively. The performance of the bdlA mutant was surprisingly the lowest, while the pilT bdlA electrogenic performance fell between the pilT mutant and wild-type bacteria. Measurements of biofilm thickness and bacterial viability showed equal viability among the different strains. The thickness of the bdlA mutant, however, was twice that of wild-type strain PAO1. This observation implicates the presence of dead or dormant bacteria in the bdlA mutant MFCs, which increases biofilm internal resistance as confirmed by electrochemical measurements.


Sensors and Actuators A-physical | 2013

A microliter-scale microbial fuel cell array for bacterial electrogenic screening☆

Sayantika Mukherjee; Shengchang Su; Warunya Panmanee; Randall T. Irvin; Daniel J. Hassett; Seokheun Choi

Collaboration


Dive into the Warunya Panmanee's collaboration.

Top Co-Authors

Avatar

Daniel J. Hassett

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Shengchang Su

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Cameron T. McDaniel

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Chloe Ja Shea

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Joel E. Mortensen

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Lamkin

Wright-Patterson Air Force Base

View shared research outputs
Top Co-Authors

Avatar

Andrew T. Paul

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Bradley E. Britigan

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge