Warwick S. Nesbitt
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Warwick S. Nesbitt.
Nature Medicine | 2009
Warwick S. Nesbitt; Erik Westein; Francisco J. Tovar-Lopez; Elham Tolouei; Arnan Mitchell; Jia Fu; Josie Carberry; Andreas Fouras; Shaun P. Jackson
Platelet aggregation at sites of vascular injury is essential for hemostasis and arterial thrombosis. It has long been assumed that platelet aggregation and thrombus growth are initiated by soluble agonists generated at sites of vascular injury. By using high-resolution intravital imaging techniques and hydrodynamic analyses, we show that platelet aggregation is primarily driven by changes in blood flow parameters (rheology), with soluble agonists having a secondary role, stabilizing formed aggregates. We find that in response to vascular injury, thrombi initially develop through the progressive stabilization of discoid platelet aggregates. Analysis of blood flow dynamics revealed that discoid platelets preferentially adhere in low-shear zones at the downstream face of forming thrombi, with stabilization of aggregates dependent on the dynamic restructuring of membrane tethers. These findings provide insight into the prothrombotic effects of disturbed blood flow parameters and suggest a fundamental reinterpretation of the mechanisms driving platelet aggregation and thrombus growth.
Nature Medicine | 2005
Shaun P. Jackson; Simone M. Schoenwaelder; Isaac Goncalves; Warwick S. Nesbitt; Cindy L. Yap; Christine E. Wright; Vijaya Kenche; Karen E Anderson; Sacha M. Dopheide; Yuping Yuan; Sharelle A. Sturgeon; Hishani Prabaharan; Philip E. Thompson; Gregg D Smith; Peter R. Shepherd; Nathalie Daniele; Suhasini Kulkarni; Belinda Abbott; Dilek Saylik; Catherine Jones; Lucy Lu; Simon Giuliano; Sascha C. Hughan; James A. Angus; Alan Duncan Robertson; Hatem H. Salem
Platelet activation at sites of vascular injury is essential for the arrest of bleeding; however, excessive platelet accumulation at regions of atherosclerotic plaque rupture can result in the development of arterial thrombi, precipitating diseases such as acute myocardial infarction and ischemic stroke. Rheological disturbances (high shear stress) have an important role in promoting arterial thrombosis by enhancing the adhesive and signaling function of platelet integrin αIIbβ3 (GPIIb-IIIa). In this study we have defined a key role for the Type Ia phosphoinositide 3-kinase (PI3K) p110β isoform in regulating the formation and stability of integrin αIIbβ3 adhesion bonds, necessary for shear activation of platelets. Isoform-selective PI3K p110β inhibitors have been developed which prevent formation of stable integrin αIIbβ3 adhesion contacts, leading to defective platelet thrombus formation. In vivo, these inhibitors eliminate occlusive thrombus formation but do not prolong bleeding time. These studies define PI3K p110β as an important new target for antithrombotic therapy.
Journal of Thrombosis and Haemostasis | 2003
Shaun P. Jackson; Warwick S. Nesbitt; Suhasini Kulkarni
Summary. Recent in vivo studies have highlighted the dynamic and complex nature of platelet thrombus growth and the requirement for multiple adhesive receptor–ligand interactions in this process. In particular, the importance of von Willebrand factor (VWF) in promoting both primary adhesion and aggregation under high shear conditions is now well established. In general, the efficiency with which platelets adhere and aggregate at sites of vessel wall injury is dependent on the synergistic action of various adhesive and soluble agonist receptors, with the contribution of each of the individual receptors dependent on the prevailing blood flow conditions. In this review, we will discuss the major platelet adhesive interactions regulating platelet thrombus formation under high shear, with specific focus on the VWF (GPIb and integrin αIIbβ3) and collagen receptors (GPVI and integrin α2β1). We will also discuss the signaling mechanisms utilized by these receptors to induce platelet activation with specific emphasis on the role of cytosolic calcium flux in regulating platelet adhesion dynamics. The role of soluble agonists in promoting thrombus growth will be highlighted and a model to explain the synergistic requirement for adhesive and soluble stimuli for efficient platelet aggregation will be discussed.
Journal of Cell Biology | 2003
Warwick S. Nesbitt; Simon Giuliano; Suhasini Kulkarni; Sacha M. Dopheide; Ian Steward Harper; Shaun P. Jackson
The ability of platelets to form stable adhesion contacts with other activated platelets (platelet cohesion or aggregation) at sites of vascular injury is essential for hemostasis and thrombosis. In this study, we have examined the mechanisms regulating cytosolic calcium flux during the development of platelet–platelet adhesion contacts under the influence of flow. An examination of platelet calcium flux during platelet aggregate formation in vitro demonstrated a key role for intercellular calcium communication (ICC) in regulating the recruitment of translocating platelets into developing aggregates. We demonstrate that ICC is primarily mediated by a signaling mechanism operating between integrin αIIbβ3 and the recently cloned ADP purinergic receptor P2Y12. Furthermore, we demonstrate that the efficiency by which calcium signals are propagated within platelet aggregates plays an important role in dictating the rate and extent of thrombus growth.
Journal of Biological Chemistry | 1999
Yuping Yuan; Suhasini Kulkarni; Philippe Ulsemer; Susan L. Cranmer; Cindy L. Yap; Warwick S. Nesbitt; Ian Harper; Nayna Mistry; Sacha M. Dopheide; Sascha Claire Hughan; David Williamson; Hatem Hh Salem; Francois Lanza; Shaun P. Jackson
Platelet adhesion to sites of vascular injury is initiated by the binding of the platelet glycoprotein (GP) Ib-V-IX complex to matrix-bound von Willebrand factor (vWf). This receptor-ligand interaction is characterized by a rapid on-off rate that enables efficient platelet tethering and rolling under conditions of rapid blood flow. We demonstrate here that platelets adhering to immobilized vWf under flow conditions undergo rapid morphological conversion from flat discs to spiny spheres during surface translocation. Studies of Glanzmann thrombasthenic platelets (lacking integrin αIIbβ3) and Chinese hamster ovary (CHO) cells transfected with GPIb/IX (CHO-Ib/IX) confirmed that vWf binding to GPIb/IX was sufficient to induce actin polymerization and cytoskeletal reorganization independent of integrin αIIbβ3. vWf-induced cytoskeletal reorganization occurred independently of several well characterized signaling processes linked to platelet activation, including calcium influx, prostaglandin metabolism, protein tyrosine phosphorylation, activation of protein kinase C or phosphatidylinositol 3-kinase but was critically dependent on the mobilization of intracellular calcium. Studies of Oregon Green 488 1,2-bis(o-amino-5-fluorophenoxy)ethane-N,N,N′,N-tetraacetic acid tetraacetoxymethyl ester-loaded platelets and CHO-Ib/IX cells demonstrated that these cells mobilize intracellular calcium in a shear-dependent manner during surface translocation on vWf. Taken together, these studies suggest that the vWf-GPIb interaction stimulates actin polymerization and cytoskeletal reorganization in rolling platelets via a shear-sensitive signaling pathway linked to intracellular calcium mobilization.
Journal of Biological Chemistry | 2000
Cindy L. Yap; Sascha Claire Hughan; Susan L. Cranmer; Warwick S. Nesbitt; Michael M. Rooney; Simon Giuliano; Suhasini Kulkarni; Sacha M. Dopheide; Yuping Yuan; Hatem H. Salem; Shaun P. Jackson
This study investigates three aspects of the adhesive interaction operating between platelet glycoprotein Ib/IX and integrin αIIbβ3. These include the following: 1) examining the sufficiency of GPIb/IX and integrin αIIbβ3 to mediate irreversible cell adhesion on immobilized von Willebrand factor (vWf) under flow; 2) the ability of the vWf-GPIb interaction to induce integrin αIIbβ3 activation independent of endogenous platelet stimuli; and 3) the identification of key second messengers linking the vWf-GPIb/IX interaction to integrin αIIbβ3 activation. By using Chinese hamster ovary cells transfected with GPIb/IX and integrin αIIbβ3, we demonstrate that these receptors are both necessary and sufficient to mediate irreversible cell adhesion under flow, wherein GPIb/IX mediates cell tethering and rolling on immobilized vWf, and integrin αIIbβ3mediates cell arrest. Moreover, we demonstrate direct signaling between GPIb/IX and integrin αIIbβ3. Studies on human platelets demonstrated that vWf binding to GPIb/IX is able to induce integrin αIIbβ3 activation independent of endogenous platelet stimuli under both static and physiological flow conditions (150–1800 s− 1). Analysis of the key second messengers linking the vWf-GPIb interaction to integrin αIIbβ3 activation demonstrated that the first step in the activation process involves calcium release from internal stores, whereas transmembrane calcium influx is a secondary event potentiating integrin αIIbβ3 activation.
Blood | 2008
Akiko Ono; Erik Westein; Sarah Hsiao; Warwick S. Nesbitt; Justin R. Hamilton; Simone M. Schoenwaelder; Shaun P. Jackson
A fundamental property of platelets is their ability to transmit cytoskeletal contractile forces to extracellular matrices. While the importance of the platelet contractile mechanism in regulating fibrin clot retraction is well established, its role in regulating the primary hemostatic response, independent of blood coagulation, remains ill defined. Real-time analysis of platelet adhesion and aggregation on a collagen substrate revealed a prominent contractile phase during thrombus development, associated with a 30% to 40% reduction in thrombus volume. Thrombus contraction developed independent of thrombin and fibrin and resulted in the tight packing of aggregated platelets. Inhibition of the platelet contractile mechanism, with the myosin IIA inhibitor blebbistatin or through Rho kinase antagonism, markedly inhibited thrombus contraction, preventing the tight packing of aggregated platelets and undermining thrombus stability in vitro. Using a new intravital hemostatic model, we demonstrate that the platelet contractile mechanism is critical for maintaining the integrity of the primary hemostatic plug, independent of thrombin and fibrin generation. These studies demonstrate an important role for the platelet contractile mechanism in regulating primary hemostasis and thrombus growth. Furthermore, they provide new insight into the underlying bleeding diathesis associated with platelet contractility defects.
Journal of Biological Chemistry | 2010
Simone M. Schoenwaelder; Akiko Ono; Warwick S. Nesbitt; Joanna Lim; Kate E. Jarman; Shaun P. Jackson
Phosphoinositide (PI) 3-kinase (PI3K) signaling processes play an important role in regulating the adhesive function of integrin αIIbβ3, necessary for platelet spreading and sustained platelet aggregation. PI3K inhibitors are effective at reducing platelet aggregation and thrombus formation in vivo and as a consequence are currently being evaluated as novel antithrombotic agents. PI3K regulation of integrin αIIbβ3 activation (affinity modulation) primarily occurs downstream of Gi-coupled and tyrosine kinase-linked receptors linked to the activation of Rap1b, AKT, and phospholipase C. In the present study, we demonstrate an important role for PI3Ks in regulating the avidity (strength of adhesion) of high affinity integrin αIIbβ3 bonds, necessary for the cellular transmission of contractile forces. Using knock-out mouse models and isoform-selective PI3K inhibitors, we demonstrate that the Type Ia p110β isoform plays a major role in regulating thrombin-stimulated fibrin clot retraction in vitro. Reduced clot retraction induced by PI3K inhibitors was not associated with defects in integrin αIIbβ3 activation, actin polymerization, or actomyosin contractility but was associated with a defect in integrin αIIbβ3 association with the contractile cytoskeleton. Analysis of integrin αIIbβ3 adhesion contacts using total internal reflection fluorescence microscopy revealed an important role for PI3Ks in regulating the stability of high affinity integrin αIIbβ3 bonds. These studies demonstrate an important role for PI3K p110β in regulating the avidity of high affinity integrin αIIbβ3 receptors, necessary for the cellular transmission of contractile forces. These findings may provide new insight into the potential antithrombotic properties of PI3K p110β inhibitors.
Journal of Molecular Medicine | 2006
Warwick S. Nesbitt; Pierre Mangin; Hatem H. Salem; Shaun P. Jackson
There is an increasing appreciation of the importance of disturbed blood flow, especially turbulent flow, in the pathogenesis of vascular disease. However, the precise mechanism(s) by which rheological changes accelerate the atherothrombotic process remains incompletely understood. Atherosclerotic lesions typically develop in vascular regions exhibiting bifurcated or curved architectures. Such regions exhibit complex blood flow profiles with considerable divergence from uniform laminar flow. These altered flow behaviours can promote deposition of pro-atherogenic lipids and proteins to the vessel wall and modulate the adhesive function of endothelial, platelets and leukocytes. Once developed, atherosclerotic lesions can further exacerbate flow disturbances, establishing a potential hazardous cycle of accelerated atherogenesis. At the cellular level, alterations in fluid flow can lead to significant changes in signal transduction, leading to a variety of functional and morphological changes. In particular, disturbed rheology has a significant impact on the adhesion and activation mechanisms utilised by platelets and leukocytes with high shear, playing an important role in accelerating platelet activation and thrombus growth. This review focuses on the impact of blood rheology on the cellular and molecular events underlying thrombosis, with particular emphasis on the role of platelets in this process.
Journal of Biological Chemistry | 2005
Isaac Goncalves; Warwick S. Nesbitt; Yuping Yuan; Shaun P. Jackson
Disturbances of blood flow play an important role in promoting platelet activation and arterial thrombus formation in stenosed, injured, atherosclerotic arteries. To date, glycoprotein Ib (GPIb) has been considered the primary platelet mechanosensory receptor, responding to increased shear with enhanced adhesive and signaling function. We demonstrate here that von Willebrand factor-GPIb interaction is inefficient at inducing platelet activation even when platelets are exposed to very high wall shear stresses (60 dyn/cm2). Rapid platelet activation under flow was only observed under experimental conditions in which transiently adherent platelets were exposed to sudden accelerations in blood flow. Platelet responsiveness to temporal shear gradients was integrin αIIbβ3-dependent and occurred only on a von Willebrand factor substrate, as platelets forming integrin αIIbβ3 adhesive contacts with immobilized fibrinogen were unresponsive to sudden increases in shear. The calcium response induced by temporal shear gradients was distinct from previously identified integrin αIIbβ3 calcium responses in terms of its transient nature, its requirement for platelet co-stimulation by the P2Y1 purinergic ADP receptor, and its dependence on the influx of extracellular calcium. Our studies demonstrate a key role for temporal shear gradients in promoting platelet activation. Moreover, they define for the first time the involvement of P2Y receptors in integrin mechanotransduction.