Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Washington Pires is active.

Publication


Featured researches published by Washington Pires.


Neuroscience Letters | 2007

Activation of the central cholinergic pathway increases post-exercise tail heat loss in rats

Thales Nicolau Prímola-Gomes; Washington Pires; Luiz Oswaldo Carneiro Rodrigues; Cândido Celso Coimbra; Umeko Marubayashi; Nilo Resende Viana Lima

The aim of this study was to evaluate the effects of stimulation of the central cholinergic pathway on the regulation of post-exercise tail heat loss in rats. Either 2.0microL of 25x10(-3)M physostigmine (Phy) or 0.15M NaCl solution (Sal) were injected into the right lateral cerebral ventricle of both resting (n=8) and post-exercising rats (n=6; 24mmin(-1); 25min; 5% inclination). Tail temperature (Ttail) was measured using a thermistor taped to the tail, and intraperitoneal temperature, an index of core temperature (Tc), was recorded using a telemetry sensor implanted into the peritoneal cavity. In resting rats, Phy induced an increase in both Ttail (26.8+/-0.3 degrees C Phy versus 25.2+/-0.6 degrees C Sal; P<0.05) and in heat loss index (0.26+/-0.03 Phy versus 0.14+/-0.05 Sal; P<0.05; 30min after injection), and a decrease in Tc compared to the Sal injection group (36.6+/-0.2 degrees C Phy versus 37.0+/-0.2 degrees C Sal; P<0.05). In post-exercising rats, Phy injection attenuated the decrease in both T(tail) (28.3+/-0.8 degrees C Phy versus 26.4+/-0.6 degrees C Sal; P<0.05) and heat loss index (0.37+/-0.07 Phy versus 0.19+/-0.02 Sal; P<0.05) without altering Tc. We conclude that activation of the central cholinergic pathway increases post-exercise tail heat loss in rats.


PLOS ONE | 2013

Physical Exercise Performance in Temperate and Warm Environments Is Decreased by an Impaired Arterial Baroreflex

Washington Pires; Samuel Penna Wanner; Milene Rodrigues Malheiros Lima; Ivana Alice Teixeira Fonseca; Ubirajara Fumega; Andréa Siqueira Haibara; Cândido Celso Coimbra; Nilo Resende Viana Lima

The present study aimed to investigate whether running performance in different environments is dependent on intact arterial baroreceptor reflexes. We also assessed the exercise-induced cardiovascular and thermoregulatory responses in animals lacking arterial baroafferent signals. To accomplish these goals, male Wistar rats were subjected to sinoaortic denervation (SAD) or sham surgery (SHAM) and had a catheter implanted into the ascending aorta to record arterial pressure and a telemetry sensor implanted in the abdominal cavity to record core temperature. After recovering from these surgeries, the animals were subjected to constant- or incremental-speed exercises performed until the voluntary interruption of effort under temperate (25° C) and warm (35° C) conditions. During the constant-speed exercises, the running time until the rats were fatigued was shorter in SAD rats in both environments. Although the core temperature was not significantly different between the groups, tail skin temperature was higher in SAD rats under temperate conditions. The denervated rats also displayed exaggerated increases in blood pressure and double product compared with the SHAM rats; in particular, in the warm environment, these exaggerated cardiovascular responses in the SAD rats persisted until they were fatigued. These SAD-mediated changes occurred in parallel with increased variability in the very low and low components of the systolic arterial pressure power spectrum. The running performance was also affected by SAD during the incremental-speed exercises, with the maximal speed attained being decreased by approximately 20% in both environments. Furthermore, at the maximal power output tolerated during the incremental exercises, the mean arterial pressure, heart rate and double product were exaggerated in the SAD relative to SHAM rats. In conclusion, the chronic absence of the arterial baroafferents accelerates exercise fatigue in temperate and warm environments. Our findings also suggest that an augmented cardiovascular strain accounted for the early interruption of exercise in the SAD rats.


Sports Medicine | 2017

Association Between Exercise-Induced Hyperthermia and Intestinal Permeability: A Systematic Review

Washington Pires; Christiano E. Veneroso; Samuel Penna Wanner; Diogo Antônio Soares Pacheco; Gisele Cristiane Vaz; Fabiano T. Amorim; Cajsa Tonoli; Danusa Dias Soares; Cândido Celso Coimbra

BackgroundProlonged and strenuous physical exercise increases intestinal permeability, allowing luminal endotoxins to translocate through the intestinal barrier and reach the bloodstream. When recognized by the immune system, these endotoxins trigger a systemic inflammatory response that may affect physical performance and, in severe cases, induce heat stroke. However, it remains to be elucidated whether there is a relationship between the magnitude of exercise-induced hyperthermia and changes in intestinal permeability.ObjectiveIn this systematic review, we evaluated whether an exercise-induced increase in core body temperature (TCore) is associated with an exercise-induced increase in intestinal permeability.MethodsThe present systematic review screened the MEDLINE/PubMed and Web of Science databases in September 2016, without any date restrictions. Sixteen studies that were performed in healthy participants, presented original data, and measured both the exercise-induced changes in TCore and intestinal permeability were selected. These studies assessed intestinal permeability through the measurement of sugar levels in the urine and measurement of intestinal fatty acid binding protein or lipopolysaccharide levels in the blood.ResultsExercise increased both TCore and intestinal permeability in most of the 16 studies. In addition, a positive and strong correlation was observed between the two parameters (r = 0.793; p < 0.001), and a TCore exceeding 39 °C was always associated with augmented permeability.ConclusionThe magnitude of exercise-induced hyperthermia is directly associated with the increase in intestinal permeability.


Brain Research | 2010

Sinoaortic denervation prevents enhanced heat loss induced by central cholinergic stimulation during physical exercise

Washington Pires; Samuel Penna Wanner; Milene Rodrigues Malheiros Lima; Bernardo Moreira Soares Oliveira; Juliana B. Guimaraes; Daniel Carvalho de Lima; Andréa Siqueira Haibara; Luiz Oswaldo Carneiro Rodrigues; Cândido Celso Coimbra; Nilo Resende Viana Lima

The present study investigated whether the effects of central cholinergic stimulation on thermoregulation during exercise are modulated by arterial baroreceptors. Wistar rats were submitted to sinoaortic denervation (SAD) or sham denervation (SHAM) and then fitted with a chronic guide cannula into the lateral cerebral ventricle. After 2 weeks, a catheter was implanted into the ascending aorta, and a temperature sensor was implanted into the peritoneal cavity. Two days later, the rats were submitted to exercise on a treadmill at 18 m/min until fatigued. Thermoregulatory and cardiovascular responses were measured after injection of 2 μL of 10mM physostigmine (Phy) or 0.15M NaCl solution (Sal) into the cerebral ventricle. In SHAM rats, Phy injection induced a greater exercise-induced increase in blood pressure and lower increase in heart rate than Sal treatment. In the SAD group, the attenuation of heart rate in response to Phy was blocked despite an exaggerated increase in blood pressure. SHAM rats treated with Phy had a higher increase in tail skin temperature compared to Sal injection (31.9 ± 0.4 °C Phy-SHAM vs. 30.1 ± 0.6 °C Sal-SHAM, 5 min after injection; p<0.05), resulting in a lower exercise-induced increase in core temperature. In contrast, SAD blocked the Phy injection effects in thermoregulatory responses during exercise (tail temperature: 30.1 ± 1.2 °C Phy-SAD vs. 29.5 ± 1.2 °C Sal-SAD, 5 min, p = 0.65). Therefore, we conclude that the enhancement of cutaneous heat loss induced by central cholinergic stimulation during exercise is mediated primarily by arterial baroreceptors.


PLOS ONE | 2014

Hypothalamic Temperature of Rats Subjected to Treadmill Running in a Cold Environment

Cletiana Gonçalves Fonseca; Washington Pires; Milene Rodrigues Malheiros Lima; Juliana Bohnen Guimarães; Nilo Resende Viana Lima; Samuel Penna Wanner

Different strategies for cooling the body prior to or during physical exercise have been shown to improve prolonged performance. Because of ethical and methodological issues, no studies conducted in humans have evaluated the changes in brain temperature promoted by cooling strategies. Therefore, our first aim sought to measure the hypothalamic temperature (Thyp) of rats subjected to treadmill running in a cold environment. Moreover, evidence suggests that Thyp and abdominal temperature (Tabd) are regulated by different physiological mechanisms. Thus, this study also investigated the dynamics of exercise-induced changes in Thyp and Tabd at two ambient temperatures: 25°C (temperate environment) and 12°C (cold). Adult male Wistar rats were used in these experiments. The rats were implanted with a guide cannula in the hypothalamus and a temperature sensor in the abdominal cavity. After recovery from this surgery, the rats were familiarized with running on a treadmill and were then subjected to the two experimental trials: constant-speed running (20 m/min) at 12°C and 25°C. Both Thyp and Tabd increased during exercise at 25°C. In contrast, Thyp and Tabd remained unchanged during fatiguing exercise at 12°C. The temperature differential (i.e., Thyp - Tabd) increased during the initial min of running at 25°C and thereafter decreased toward pre-exercise values. Interestingly, external cooling prevented this early increase in the temperature differential from the 2nd to the 8th min of running. In addition, the time until volitional fatigue was higher during the constant exercise at 12°C compared with 25°C. Together, our results indicate that Thyp and Tabd are regulated by different mechanisms in running rats and that external cooling affected the relationship between both temperature indexes observed during exercise without environmental thermal stress. Our data also suggest that attenuated hypothalamic hyperthermia may contribute to improved performance in cold environments.


Neuroscience Letters | 2011

Muscarinic receptors within the ventromedial hypothalamic nuclei modulate metabolic rate during physical exercise.

Samuel Penna Wanner; Juliana Bohnen Guimarães; Washington Pires; Umeko Marubayashi; Nilo Resende Viana Lima; Cândido Celso Coimbra

The involvement of muscarinic cholinoceptors within the ventromedial hypothalamic nuclei (VMH) on the exercise-induced increase in oxygen consumption (VO(2)) was investigated. Rats were fitted with bilateral cannulae into the VMH for local delivery of drugs. On the day of the experiments, the animals were submitted to running exercise (20 m/min; 5% grade) until the point of fatigue. VO(2) was continuously measured after bilateral injections of either 0.2 μL of 5 × 10(-9)mol methylatropine or 0.15M NaCl solution into the VMH. Control experiments were conducted in freely moving rats on the treadmill. Muscarinic blockade within the VMH reduced time to fatigue by 32% and enhanced the increase in VO(2) from the 8th until the 17th min of exercise when compared to the control trial. In fact, time to fatigue was negatively correlated to the rate of increase in VO(2) (r(2)=0.747; P<0.001). However, bilateral injections of methylatropine in freely moving rats did not change VO(2) in comparison to saline injections. In conclusion, muscarinic cholinoceptors within the VMH are activated during exercise to modulate the increase in metabolic rate. Furthermore, blocking muscarinic transmission leads to a faster increase in VO(2) that is associated with the early interruption of exercise.


Temperature (Austin, Tex.) | 2015

Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology

Samuel Penna Wanner; Thales Nicolau Prímola-Gomes; Washington Pires; Juliana Bohnen Guimarães; Alexandre Sérvulo Ribeiro Hudson; Ana Cançado Kunstetter; Cletiana Gonçalves Fonseca; Lucas Rios Drummond; William Coutinho Damasceno; Francisco Teixeira-Coelho

Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.


Neuroscience Letters | 2013

Chronic sympathectomy of the caudal artery delays cutaneous heat loss during passive heating

Milene Rodrigues Malheiros Lima; Washington Pires; Ivana Alice Teixeira Fonseca; Cletiana Gonçalves Fonseca; Patrícia Massara Martinelli; Samuel Penna Wanner; Nilo Resende Viana Lima

The present study aimed to investigate the chronic effects of caudal artery sympathectomy on thermoregulatory adjustments induced by passive heating. Male Wistar rats were subjected to two surgical procedures: caudal artery denervation (CAD) or sham surgery (Sham-CAD) and intraperitoneal implantation of a temperature sensor. On the day of the experiments, the animals were exposed to an ambient temperature of 36°C for 60min or allowed to rest under thermoneutral conditions (26°C). During the experiments, the tail skin temperature (T(skin)) and the core body temperature (T(core)) were measured. Under thermoneutral conditions, although sympathetic denervation did not change the average values of T(core) and T(skin), CAD rats exhibited decreased T(skin) variability compared with Sham-CAD rats (0.020±0.005°C vs. 0.031±0.005°C; P=0.024). During heat exposure, no differences were observed in the T(core) between the groups. In contrast, although peak T(skin) values were not affected by chronic sympathectomy of the caudal artery, CAD animals showed a delayed increase in T(skin); the time until the stabilization of T(skin) was three-fold longer in CAD rats than in Sham-CAD rats (15.3±2.5min vs. 4.9±0.6min; P=0.001). In conclusion, chronic sympathectomy of the caudal artery delays cutaneous heat loss during passive heating and decreases T(skin) variability under thermoneutral conditions. Taken together, our results indicate that the sympathetic innervation of cutaneous vessels is essential for the precise regulation of tail heat loss.


The Journal of Experimental Biology | 2014

Exercising for food: bringing the laboratory closer to nature

Ivana Alice Teixeira Fonseca; Renata Lane de Freitas Passos; Fernanda de Assis Araújo; Milene Rodrigues Malheiros Lima; Débora Romualdo Lacerda; Washington Pires; Danusa Dias Soares; Robert J. Young; Luiz Oswaldo Carneiro Rodrigues

Traditionally, exercise physiology experiments have borne little resemblance to how animals express physical activity in the wild. In this experiment, 15 adult male rats were divided into three equal-sized groups: exercise contingent (CON), non-exercise contingent (NON) and sedentary (SED). The CON group was placed in a cage with a running wheel, where the acquisition of food was contingent upon the distance required to run. Every 3 days the distance required to run to maintain food intake at free feeding levels was increased by 90% in comparison to the previous 3 days. The NON group was housed identically to the CON group, but food acquisition was not dependent upon running in the wheel. Finally, the SED group was kept in small cages with no opportunity to perform exercise. A two-way ANOVA with repeated measures was used to determine significant differences in responses between the experimental phases and treatment groups, and ANCOVA was used to analyse growth and tissue mass variables with body length and body mass used separately as covariates. A post hoc Tukeys test was used to indicate significant differences. A Pearsons correlation was used to test the relationship between the distance travelled by the animal and the distance/food ratio. The level of significance was set at P<0.05 for all tests. The CON group showed the hypothesized correlation between distance required to run to obtain food and the mean distance travelled (P<0.001), during 45 days in the contingency phase. This group showed a decrease in body mass, rather than an increase as shown by NON and SED groups. The CON group had a significantly lower body temperature (P<0.05) and adiposity (P<0.05) when compared with the other two groups for the same body size. The present experimental model based on animals choosing the characteristics of their physical exercise to acquire food (i.e. distance travelled, speed and duration) clearly induced physiological effects (body characteristics and internal temperature), which are useful for investigating relevant topics in exercise physiology such as the link between exercise, food and body mass.


Journal of Thermal Biology | 2017

Changes in systolic arterial pressure variability are associated with the decreased aerobic performance of rats subjected to physical exercise in the heat.

Flávia Camargos de Figueirêdo Müller-Ribeiro; Samuel Penna Wanner; Weslley H.M. Santos; Milene R. Malheiros-Lima; Ivana Alice Teixeira Fonseca; Cândido Celso Coimbra; Washington Pires

Enhanced cardiovascular strain is one of the factors that explains degraded aerobic capacity in hot environments. The cardiovascular system is regulated by the autonomic nervous system, whose activity can be indirectly evaluated by analyzing heart rate variability (HRV) and systolic arterial pressure (SAP) variability. However, no study has addressed whether HRV or SAP variability can predict aerobic performance during a single bout of exercise. Therefore, this study aimed to investigate whether there is an association between cardiovascular variability and performance in rats subjected to treadmill running at two ambient temperatures. In addition, this study investigated whether the heat-induced changes in cardiovascular variability and reductions in performance are associated with each other. Male Wistar rats were implanted with a catheter into their carotid artery for pulsatile blood pressure recordings. After recovery from surgery, the animals were subjected to incremental-speed exercise until they were fatigued under temperate (25°C) and hot (35°C) conditions. Impaired performance and exaggerated cardiovascular responses were observed in the hot relative to the temperate environment. Significant and negative correlations between most of the SAP variability components (standard deviation, variance, very low frequency [VLF], and low frequency [LF]) at the earlier stages of exercise and total exercise time were observed in both environmental conditions. Furthermore, the heat-induced changes in the sympathetic components of SAP variability (VLF and LF) were associated with heat-induced impairments in performance. Overall, the results indicate that SAP variability at the beginning of exercise predicts the acute performance of rats. Our findings also suggest that heat impairments in aerobic performance are associated with changes in cardiovascular autonomic control.

Collaboration


Dive into the Washington Pires's collaboration.

Top Co-Authors

Avatar

Samuel Penna Wanner

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Nilo Resende Viana Lima

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Cândido Celso Coimbra

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Milene Rodrigues Malheiros Lima

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Luiz Oswaldo Carneiro Rodrigues

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Danusa Dias Soares

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Ivana Alice Teixeira Fonseca

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Andréa Siqueira Haibara

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Cletiana Gonçalves Fonseca

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Juliana B. Guimaraes

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge