Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Washington Tapia is active.

Publication


Featured researches published by Washington Tapia.


PLOS ONE | 2010

Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance.

Maria Cristina Thaller; Luciana Migliore; Cruz Marquez; Washington Tapia; Virna Cedeño; Gian Maria Rossolini; Gabriele Gentile

Background Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. Methodology/Principal Findings Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i) the abiotic conditions ensure to microbes good survival possibilities in the environment; ii) the animal density and their habits favour microbial circulation between individuals; and iii) there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. Conclusions/Significance Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.


Proceedings of the Royal Society of London B: Biological Sciences | 2004

Genetic analysis of a successful repatriation programme: giant Galápagos tortoises

Michel C. Milinkovitch; Daniel Monteyne; James P. Gibbs; Thomas H. Fritts; Washington Tapia; Howard L. Snell; Ralph Tiedemann; Adalgisa Caccone; Jeff R. Powell

As natural populations of endangered species dwindle to precarious levels, remaining members are sometimes brought into captivity, allowed to breed and their offspring returned to the natural habitat. One goal of such repatriation programmes is to retain as much of the genetic variation of the species as possible. A taxon of giant Galápagos tortoises on the island of Española has been the subject of a captive breeding–repatriation programme for 33 years. Core breeders, consisting of 12 females and three males, have produced more than 1200 offspring that have been released on Española where in situ reproduction has recently been observed. Using microsatellite DNA markers, we have determined the maternity and paternity of 132 repatriated offspring. Contributions of the breeders are highly skewed. This has led to a further loss of genetic variation that is detrimental to the long–term survival of the population. Modifications to the breeding programme could alleviate this problem.


Molecular Ecology | 2008

Population genetics of Galápagos land iguana (genus Conolophus) remnant populations

Athanasia C. Tzika; Sabrina Rosa; Anna Fabiani; Howard L. Snell; Heidi M. Snell; Cruz Marquez; Washington Tapia; Kornelia Rassmann; Gabriele Gentile; Michel C. Milinkovitch

The Galápagos land iguanas (genus Conolophus) have faced significant anthropogenic disturbances since the 17th century, leading to severe reduction of some populations and the extinction of others. Conservation activities, including the repatriation of captive‐bred animals to depleted areas, have been ongoing since the late 1970s, but genetic information has not been extensively incorporated. Here we use nine species‐specific microsatellite loci of 703 land iguanas from the six islands where the species occur today to characterize the genetic diversity within, and the levels of genetic differentiation among, current populations as well as test previous hypotheses about accidental translocations associated with early conservation efforts. Our analyses indicate that (i) five populations of iguanas represent distinct conservation units (one of them being the recently discovered rosada form) and could warrant species status, (ii) some individuals from North Seymour previously assumed to be from the natural Baltra population appear related to both Isabela and Santa Cruz populations, and (iii) the five different management units exhibit considerably different levels of intrapopulation genetic diversity, with the Plaza Sur and Santa Fe populations particularly low. Although the initial captive breeding programmes, coupled with intensive efforts to eradicate introduced species, saved several land iguana populations from extinction, our molecular results provide objective data for improving continuing in situ species survival plans and population management for this spectacular and emblematic reptile.


Journal of Animal Ecology | 2013

Vegetation dynamics drive segregation by body size in Galapagos tortoises migrating across altitudinal gradients

Stephen Blake; Charles B. Yackulic; Fredy Cabrera; Washington Tapia; James P. Gibbs; Franz Kümmeth; Martin Wikelski

Seasonal migration has evolved in many taxa as a response to predictable spatial and temporal variation in the environment. Individual traits, physiology and social state interact with environmental factors to increase the complexity of migratory systems. Despite a huge body of research, the ultimate causes of migration remain unclear. A relatively simple, tractable system - giant tortoises on Santa Cruz Island, Galapagos, was studied to elucidate the roles of environmental variation and individual traits in a partial migratory system. Specifically, we asked: (i) do Galapagos tortoises undergo long-distance seasonal migrations? (ii) is tortoise migration ultimately driven by gradients in forage quality or temperature; and (iii) how do sex and body size influence migration patterns? We recorded the daily locations of 17 GPS-tagged tortoises and walked a monthly survey along the altitudinal gradient to characterize the movements and distribution of tortoises of different sizes and sexes. Monthly temperature and rainfall data were obtained from weather stations deployed at various altitudes, and the Normalized Difference Vegetation Index was used as a proxy for forage quality. Analyses using net displacement or daily movement characteristics did not agree on assigning individuals as either migratory or non-migratory; however, both methods suggested that some individuals were migratory. Adult tortoises of both sexes move up and down an altitudinal gradient in response to changes in vegetation dynamics, not temperature. The largest tagged individuals all moved, whereas only some mid-sized individuals moved, and the smallest individuals never left lowland areas. The timing of movements varied with body size: large individuals moved upward (as lowland forage quality declined) earlier in the year than did mid-sized individuals, while the timing of downward movements was unrelated to body size and occurred as lowland vegetation productivity peaked. Giant tortoises are unlikely candidates for forage-driven migration as they are well buffered against environmental fluctuations by large body size and a slow metabolism. Notably the largest, and presumably most dominant, individuals were most likely to migrate. This characteristic and the lack of sex-based differences in movement behaviour distinguish Galapagos tortoise movement from previously described partial migratory systems.


Genetics | 2006

Phylogeographic history and gene flow among giant galápagos tortoises on southern Isabela Island

Claudio Ciofi; Gregory A. Wilson; Luciano B. Beheregaray; Cruz Marquez; James P. Gibbs; Washington Tapia; Howard L. Snell; Adalgisa Caccone; Jeffrey R. Powell

Volcanic islands represent excellent models with which to study the effect of vicariance on colonization and dispersal, particularly when the evolution of genetic diversity mirrors the sequence of geological events that led to island formation. Phylogeographic inference, however, can be particularly challenging for recent dispersal events within islands, where the antagonistic effects of land bridge formation and vicariance can affect movements of organisms with limited dispersal ability. We investigated levels of genetic divergence and recovered signatures of dispersal events for 631 Galápagos giant tortoises across the volcanoes of Sierra Negra and Cerro Azul on the island of Isabela. These volcanoes are among the most recent formations in the Galápagos (<0.7 million years), and previous studies based on genetic and morphological data could not recover a consistent pattern of lineage sorting. We integrated nested clade analysis of mitochondrial DNA control region sequences, to infer historical patterns of colonization, and a novel Bayesian multilocus genotyping method for recovering evidence of recent migration across volcanoes using eleven microsatellite loci. These genetic studies illuminate taxonomic distinctions as well as provide guidance to possible repatriation programs aimed at countering the rapid population declines of these spectacular animals.


Physiological and Biochemical Zoology | 2009

Temporal and Spatial Covariation of Gender and Oxidative Stress in the Galápagos Land Iguana Conolophus subcristatus

David Costantini; Giacomo Dell’Omo; Stefania Paola De Filippis; Cruz Marquez; Howard L. Snell; Heidi M. Snell; Washington Tapia; Gianfranco Brambilla; Gabriele Gentile

Physiological responses to organismal stress can have direct impacts on individual fitness. While responses to stressors mediated by glucocorticoid hormones are well studied, the regulation of the redox system via pro‐oxidant and antioxidant balance as well as the natural causes of oxidative stress in nature remain poorly known, especially for reptiles. In this study, we investigate the interpopulation and intersex variation in oxidative damage and plasma antioxidant capacity in the Galápagos land iguana, Conolophus subcristatus, over a 3‐yr study to evaluate what factors (e.g., season, food availability, reproductive activity) can explain levels and patterns of oxidative damage and of plasma antioxidant capacity. Our results indicate that (1) males showed lower levels of oxidative damage, higher levels of plasma antioxidant capacity, and better body condition than females and (2) significant interactions exist among patterns of oxidative damage across sexes, sampling localities, body condition, and season. These results suggest that reproductive activity and food abundance might act as determinants shaping levels and patterns of oxidative stress of land iguanas.


PLOS ONE | 2010

DNA from the Past Informs Ex Situ Conservation for the Future: An “Extinct” Species of Galápagos Tortoise Identified in Captivity

Michael A. Russello; Nikos Poulakakis; James P. Gibbs; Washington Tapia; Edgar Benavides; Jeffrey R. Powell; Adalgisa Caccone

Background Although not unusual to find captive relicts of species lost in the wild, rarely are presumed extinct species rediscovered outside of their native range. A recent study detected living descendents of an extinct Galápagos tortoise species (Chelonoidis elephantopus) once endemic to Floreana Island on the neighboring island of Isabela. This finding adds to the growing cryptic diversity detected among these species in the wild. There also exists a large number of Galápagos tortoises in captivity of ambiguous origin. The recently accumulated population-level haplotypic and genotypic data now available for C. elephantopus add a critical reference population to the existing database of 11 extant species for investigating the origin of captive individuals of unknown ancestry. Methodology/Findings We reanalyzed mitochondrial DNA control region haplotypes and microsatellite genotypes of 156 captive individuals using an expanded reference database that included all extant Galápagos tortoise species as well as the extinct species from Floreana. Nine individuals (six females and three males) exhibited strong signatures of Floreana ancestry and a high probability of assignment to C. elephantopus as detected by Bayesian assignment and clustering analyses of empirical and simulated data. One male with high assignment probability to C. elephantopus based on microsatellite genotypic data also possessed a “Floreana-like” mitochondrial DNA haplotype. Significance Historical DNA analysis of museum specimens has provided critical spatial and temporal components to ecological, evolutionary, taxonomic and conservation-related research, but rarely has it informed ex situ species recovery efforts. Here, the availability of population-level genotypic data from the extinct C. elephantopus enabled the identification of nine Galápagos tortoise individuals of substantial conservation value that were previously misassigned to extant species of varying conservation status. As all captive individuals of C. elephantopus ancestry currently reside at a centralized breeding facility on Santa Cruz, these findings permit breeding efforts to commence in support of the reestablishment of this extinct species to its native range.


Proceedings of the National Academy of Sciences of the United States of America | 2009

An overlooked pink species of land iguana in the Galápagos

Gabriele Gentile; Anna Fabiani; Cruz Marquez; Howard L. Snell; Heidi M. Snell; Washington Tapia; Valerio Sbordoni

Despite the attention given to them, the Galápagos have not yet finished offering evolutionary novelties. When Darwin visited the Galápagos, he observed both marine (Amblyrhynchus) and land (Conolophus) iguanas but did not encounter a rare pink black-striped land iguana (herein referred to as “rosada,” meaning “pink” in Spanish), which, surprisingly, remained unseen until 1986. Here, we show that substantial genetic isolation exists between the rosada and syntopic yellow forms and that the rosada is basal to extant taxonomically recognized Galápagos land iguanas. The rosada, whose present distribution is a conundrum, is a relict lineage whose origin dates back to a period when at least some of the present-day islands had not yet formed. So far, this species is the only evidence of ancient diversification along the Galápagos land iguana lineage and documents one of the oldest events of divergence ever recorded in the Galápagos. Conservation efforts are needed to prevent this form, identified by us as a good species, from extinction.


Molecular Ecology | 2014

Lineage fusion in Galápagos giant tortoises.

Ryan C. Garrick; Edgar Benavides; Michael A. Russello; Chaz Hyseni; Danielle L. Edwards; James P. Gibbs; Washington Tapia; Claudio Ciofi; Adalgisa Caccone

Although many classic radiations on islands are thought to be the result of repeated lineage splitting, the role of past fusion is rarely known because during these events, purebreds are rapidly replaced by a swarm of admixed individuals. Here, we capture lineage fusion in action in a Galápagos giant tortoise species, Chelonoidis becki, from Wolf Volcano (Isabela Island). The long generation time of Galápagos tortoises and dense sampling (841 individuals) of genetic and demographic data were integral in detecting and characterizing this phenomenon. In C. becki, we identified two genetically distinct, morphologically cryptic lineages. Historical reconstructions show that they colonized Wolf Volcano from Santiago Island in two temporally separated events, the first estimated to have occurred ~199 000 years ago. Following arrival of the second wave of colonists, both lineages coexisted for approximately ~53 000 years. Within that time, they began fusing back together, as microsatellite data reveal widespread introgressive hybridization. Interestingly, greater mate selectivity seems to be exhibited by purebred females of one of the lineages. Forward‐in‐time simulations predict rapid extinction of the early arriving lineage. This study provides a rare example of reticulate evolution in action and underscores the power of population genetics for understanding the past, present and future consequences of evolutionary phenomena associated with lineage fusion.


PLOS ONE | 2015

Description of a New Galapagos Giant Tortoise Species (Chelonoidis; Testudines: Testudinidae) from Cerro Fatal on Santa Cruz Island

Nikos Poulakakis; Danielle L. Edwards; Ylenia Chiari; Ryan C. Garrick; Michael A. Russello; Edgar Benavides; Gregory J. Watkins-Colwell; Scott Glaberman; Washington Tapia; James P. Gibbs; Linda J. Cayot; Adalgisa Caccone

The taxonomy of giant Galapagos tortoises (Chelonoidis spp.) is currently based primarily on morphological characters and island of origin. Over the last decade, compelling genetic evidence has accumulated for multiple independent evolutionary lineages, spurring the need for taxonomic revision. On the island of Santa Cruz there is currently a single named species, C. porteri. Recent genetic and morphological studies have shown that, within this taxon, there are two evolutionarily and spatially distinct lineages on the western and eastern sectors of the island, known as the Reserva and Cerro Fatal populations, respectively. Analyses of DNA from natural populations and museum specimens, including the type specimen for C. porteri, confirm the genetic distinctiveness of these two lineages and support elevation of the Cerro Fatal tortoises to the rank of species. In this paper, we identify DNA characters that define this new species, and infer evolutionary relationships relative to other species of Galapagos tortoises.

Collaboration


Dive into the Washington Tapia's collaboration.

Top Co-Authors

Avatar

James P. Gibbs

State University of New York College of Environmental Science and Forestry

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Russello

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan C. Garrick

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge