Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wasiuddin A. Khan is active.

Publication


Featured researches published by Wasiuddin A. Khan.


Cellular Signalling | 1995

Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C

Wasiuddin A. Khan; Gerard C. Blobe; Yusuf A. Hannun

In addition to serving as the precursor to a plethora of eicosanoids and other bioactive molecules, arachidonate may function as a bona fide second messenger. A number of studies have documented the ability of arachidonate to regulate the function of multiple targets in vitro systems. This has been particularly well established and studied with the activation of protein kinase C by arachidonate in a mechanism distinct from activation by diacylglycerol. In cells, arachidonate induces a number of activities, many of which may be independent of further metabolism to eicosanoids; suggesting possible direct action of arachidonate. This review summarizes the current state of knowledge on the possible second messenger function of arachidonate with specific emphasis on the regulation of protein kinase C.


Journal of Toxicology and Environmental Health | 2004

Neurological deficits induced by malathion, DEET, and permethrin, alone or in combination in adult rats.

Ali del-Rahman; Anjelika M. Dechkovskaia; Larry B. Goldstein; Sara H. Bullman; Wasiuddin A. Khan; Eman M. EL-Masry; Mohamed B. Abou-Donia

Malathion (OO-dimethyl-S-[1,2-carbethoxyethyl]phosphorodithionate), DEET (NN-diethyl-m-toluamide), and permethrin [(±)-cis/trans-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane carboxylic acid (3-phenoxyphenyl) methyl ester] are commonly used pesticides. To determine the effects of the dermal application of these chemicals, alone or in combination, the sensorimotor behavior, central cholinergic system, and histopathological alterations were studied in adult male Sprague-Dawley rats following a daily dermal dose of 44.4 mg/kg malathion, 40 mg/kg DEET, and 0.13 mg/kg permethrin, alone and in combination for 30 d. Neurobehavioral evaluations of sensorimotor functions included beam-walking score, beam walk time, inclined plane, and grip response assessments. Twenty-four hours after the last treatment with each chemical alone or in combination all behavioral measures were impaired. The combination of DEET and permethrin, malathion and permethrin, or the three chemicals together resulted in greater impairments in inclined performance than permethrin alone. Only animals treated with a combination of DEET and malathion or with DEET and permethrin exhibited significant increases in plasma butyrlcholinesterase (BChE) activity. Treatment with DEET or permethrin alone, malathion and permethrin, or DEET and permethrin produced significant increases in cortical acetylcholinesterase (AChE) activity. Combinations of malathion and permethrin or of DEET and permethrin produced significant decreases in midbrain AChE activity. Animals treated with DEET alone exhibited a significant increase in cortical m2 muscarinic ACh receptor binding. Quantification of neuron density in the dentate gyrus, CA1 and CA3 subfields of the hippocampus, midbrain, brainstem, and cerebellum revealed significant reductions in the density of surviving neurons with various treatments. These results suggest that exposure to real-life doses of malathion, DEET, and permethrin, alone or in combination, produce no overt signs of neurotoxicity but induce significant neurobehavioral deficits and neuronal degeneration in brain.


Pharmacology, Biochemistry and Behavior | 2004

Co-exposure to pyridostigmine bromide, DEET, and/or permethrin causes sensorimotor deficit and alterations in brain acetylcholinesterase activity

Mohamed B. Abou-Donia; Anjelika M. Dechkovskaia; Larry B. Goldstein; Ali Abdel-Rahman; Sarah L. Bullman; Wasiuddin A. Khan

Military personnel deployed in the Persian Gulf War (PGW) were exposed to a combination of chemicals, including pyridostigmine bromide (PB), DEET, and permethrin. We investigated the dose-response effects of these chemicals, alone or in combination, on the sensorimotor performance and cholinergic system of male Sprague-Dawley rats. Animals were treated with a daily dermal dose of DEET and/or permethrin for 60 days and/or PB (gavage) during the last 15 days. Neurobehavioral performance was assessed on day 60 following the beginning of the treatment with DEET and permethrin. The rats were sacrificed 24 h after the last treatment for biochemical evaluations. PB alone, or in combination with DEET, or DEET and permethrin resulted in deficits in beam-walk score and longer beam-walk times compared to controls. PB alone, or in combination with DEET, permethrin, or DEET and permethrin caused impairment in incline plane performance and forepaw grip strength. PB alone at all doses slightly inhibited plasma butyrylcholinesterase activity, whereas combination of PB with DEET or permethrin increased its activity. Brainstem acetylcholinesterase (AChE) activity significantly increased following treatment with combinations of either DEET or permethrin at all doses, whereas the cerebellum showed a significant increase in AChE activity following treatment with a combination of PB/DEET/permethrin. Co-exposure to PB, DEET, and permethrin resulted in significant inhibition in AChE in midbrain. PB alone or in combination with DEET and permethrin at all doses increased ligand binding for m2 muscarinic acetylcholine receptor in the cortex. In addition, PB and DEET together or a combination of PB, DEET, and permethrin significantly increased ligand binding for nicotinic acetylcholine receptor. These results suggest that exposure to various doses of PB, alone and in combination with DEET and permethrin, leads to sensorimotor deficits and differential alterations of the cholinergic system in the CNS.


Biochemical and Biophysical Research Communications | 1990

Protein kinase C and platelet inhibition by D-erythro-sphingosine: Comparison with N,N-dimethylsphingosine and commercial preparation☆

Wasiuddin A. Khan; Rick T. Dobrowsky; Samia El Touny; Yusuf A. Hannun

Sphingosine has been shown to be a potent and specific inhibitor of protein kinase C in vitro and in cell systems including human platelets. Questions have been raised as to the validity of commercial sphingosine as a protein kinase C inhibitor and whether sphingosine or N,N-dimethylsphingosine is the active species. In the present study, we compared the effects of synthetic D-erythro-sphingosine, N,N-dimethylsphingosine and commercial sphingosine on purified protein kinase C in vitro and washed human platelets. These three compounds were found to be of high purity and well-defined structure based on [1H]NMR, FAB-mass Spectrometry, and TLC analysis. Both synthetic D-erythro-sphingosine and commercial sphingosine inhibited protein kinase C in vitro using vesicle as well as mixed micellar assays. N,N-dimethylsphingosine also significantly inhibited purified protein kinase C in vitro. Both preparations of sphingosine inhibited phosphorylation for 40 kD protein, a known substrate of protein kinase C in platelets. Similarly both sphingosine preparations inhibited aggregation and secretion of human platelets induced by 8 nM gamma-thrombin. These results indicate that sphingosine from commercial source, synthetic sphingosine and N,N-dimethylsphingosine are equipotent in inhibiting protein kinase C. These studies also validate the utility of sphingosine as a phamarcologic inhibitor of protein kinase C in vitro and in cell systems.


Journal of Toxicology and Environmental Health | 2001

EFFECTS OF DAILY DERMAL APPLICATION OF DEET AND PERMETHRIN, ALONE AND IN COMBINATION, ON SENSORIMOTOR PERFORMANCE, BLOOD-BRAIN BARRIER, AND BLOOD-TESTIS BARRIER IN RATS

Mohamed B. Abou-Donia; Larry B. Goldstein; A. Dechovskaia; Sarah L. Bullman; Katherine H. Jones; Elizabeth A. Herrick; Ali Abdel-Rahman; Wasiuddin A. Khan

DEET and permethrin were implicated in the development of illnesses in some veterans of the Persian Gulf War. This study was designed to investigate the effects of daily dermal application of these chemicals, alone or in combination, on the permeability of the blood-brain barrier (BBB) and blood-testes barrier (BTB) and on sensorimotor performance in male Sprague-Dawley rats. Groups of five rats were treated with a dermal daily dose of 4, 40, or 400 mg/kg DEET in ethanol or 0.013, 0.13, or 1.3 mg/kg permethrin in ethanol for 60 d. A group of 10 rats received a daily dermal dose of ethanol and served as controls. BBB permeability was assessed by injection of an iv dose of the quaternary ammonium compound [3H]hexamethonium iodide. While permethrin produced no effect on BBB permeability, DEET alone caused a decrease in BBB permeability in brainstem. A combination of DEET and permethrin significantly decreased the BBB permeability in the cortex. BTB permeability was decreased by treatment with DEET alone and in combination with permethrin. The same animals underwent a battery of functional behavior tests 30, 45, and 60 d after exposure to evaluate their sensorimotor abilities. All treatments caused a significant decline in sensorimotor performance in a dose- and time-dependent manner. These results show that daily dermal exposure to DEET, alone or in combination with permethrin, decreased BBB permeability in certain brain regions, and impaired sensorimotor performance.


Prostaglandins Leukotrienes and Essential Fatty Acids | 1995

Protein kinase C: Cellular target of the second messenger arachidonic acid?

Gerard C. Blobe; Wasiuddin A. Khan; Yusuf A. Hannun

Protein kinase C (PKC) is a family of serine/threonine protein kinases which play a critical role in signal transduction, tumor promotion and cell regulation. Initially characterized as a calcium-and phospholipid-dependent protein kinase, early studies demonstrated that PKC was activated potently by diacylglycerol (DAG), a product of phosphatidylinositol turnover, establishing a role for PKC in signal transduction. More recently, PKC has been shown to be activated by free fatty acids, both in vitro and in vivo. Since arachidonic acid and other free fatty acids have been characterized as second messengers, this connection has strengthened the role of PKC in signal transduction. The activation of PKC by the classical activators of PKC, phosphatidylserine (PS), DAG and calcium has been reviewed recently (1-3). This review will focus on the activation of PKC by free fatty acids in vitro and in vivo. We will begin by presenting an overview of PKC to (1) review classical activation of PKC (by PS/DAG) to use as a point of reference and comparison to fatty acid-induced activation and (2) elaborate on the methodology currently used to study PKC including the advantages and disadvantages of these approaches. We will then review the activation of PKC by free fatty acids both in vitro and in vivo. Finally, we will end by presenting a model for free fatty acid activation of PKC.


Pharmacology, Biochemistry and Behavior | 2002

Uranyl acetate-induced sensorimotor deficit and increased nitric oxide generation in the central nervous system in rats.

Mohamed B. Abou-Donia; Anjelika M. Dechkovskaia; Larry B. Goldstein; Deepti U. Shah; Sarah L. Bullman; Wasiuddin A. Khan

We investigated the effects of uranyl acetate on sensorimotor behavior, generation of nitric oxide and the central cholinergic system of rats. Male Sprague-Dawley rats were treated with intramuscular injection of 0.1 and 1 mg/kg uranyl acetate in water, daily for 7 days. Control animals received equivalent amount of water. The treatment was stopped after the seventh injection because the animals in the 1-mg/kg group appeared lethargic. The animals were maintained for an additional observation period of 30 days. The study was initiated as a dose-finding study that covered doses of 10 and 100 mg/kg, as well. However, all the animals in the 100-mg/kg treatment group died after the third and fourth injections, and all animals given 10 mg/kg died after the fifth and sixth injections. On Day 30 following the cessation of treatment, the sensorimotor functions of the animals in the 0.1- and 1-mg/kg treatment groups were evaluated using a battery of tests that included measurements of postural reflexes, limb placing, orientation to vibrissae touch, grip time, beam walking and inclined plane performance. The animals were sacrificed the same day and the cerebral cortex, brainstem, cerebellum and midbrain were dissected. The levels of nitric oxide as marker for increased oxidative stress, and the integrity of the cholinergic system as reflected in acetylcholinesterase (AChE) activity and m2 muscarinic acetylcholine receptors ligand binding, were determined. The data from behavioral observations show that there was a dose-related deficit at the 0.1- and 1-mg/kg treatment groups for inclined plane performance. Both doses reduced grip time, but there was no significant difference between the two doses. Similarly, both beam-walk score and beam-walk time were impaired at both doses as compared with the controls. A significant increase in nitric oxide was seen at 0.1 mg/kg dose in cortex and midbrain, whereas brainstem and cerebellum showed an insignificant decrease at both the doses. Similarly, there was no significant change in nitric oxide levels in kidneys and liver of the treated animals as compared with the controls. There was a significant increase in AChE activity in the cortex of the animals treated with 1 mg/kg uranyl acetate, but not in other brain regions. Ligand binding densities for the m2 muscarinic receptor did not show any change. These results show that low-dose, multiple exposure to uranyl acetate caused prolonged neurobehavioral deficits after the initial exposure has ceased.


FEBS Letters | 1991

Arachidonic and cis-unsaturated fatty acids induce selective platelet substrate phosphorylation through activation of cytosolic protein kinase C

Wasiuddin A. Khan; Samia El Touny; Yusuf A. Hannun

The ability of arachidonic acid and other fatty acids to induce phosphorylation of endogenous substrates and the role of protein kinase C in mediating these effects were examined. In a cell‐free cytosolic system derived from human platelets, arachidonic, oleic, and othercis‐unsaturated fatty acids induced a dose‐dependent phosphorylation of several endogenous substrates. These substrates form a subset of phorbol ester‐induced phosphorylations. Multiple lines of evidence suggested the direct involvement of protein kinase C in mediating fatty acid‐induced phosphorylations. These observations suggest that arachidonic acid and other unsaturated fatty acids are capable of activating protein kinase C in a physiologic environment resulting in the phosphorylation of multiple endogenous substrates.


Journal of Toxicology and Environmental Health | 2003

Increased expression of glial fibrillary acidic protein in cerebellum and hippocampus: differential effects on neonatal brain regional acetylcholinesterase following maternal exposure to combined chlorpyrifos and nicotine.

Ali Abdel-Rahman; Anjelika M. Dechkovskaia; Heena Mehta-Simmons; Xiangrong Guan; Wasiuddin A. Khan; Mohamed B. Abou-Donia

Cigarette smoking and environmental exposure to chlorpyrifos during pregnancy could lead to developmental toxicity in the offspring. In the present study, pregnant female Sprague-Dawley rats (300-350 g) were treated daily with nicotine (1 mg/kg, sc) or chlorpyrifos (0.1 mg/kg, dermal) or a combination of nicotine and chlorpyrifos from gestational days (GD) 4-20. Control animals were treated with saline and ethanol. Male offspring from the mothers treated with nicotine alone gained significantly less weight on postnatal day (PND) 30 as compared to control. On PND 7, there was a significant increase in brain acetylcholinesterase (AChE) activity in pups from nicotine- and chlorpyrifos-treated dams, whereas plasma butyrylcholinesterase (BChE) activity was significantly elevated in pups of mothers treated with either chlorpyrifos alone or pesticide combined with nicotine. On PND 30 there was a significant increase in AChE activity in brainstem and cerebellum in all treated male pups. In female pups on PND 30 there was a significant rise in AChE activity in brainstem of chlorpyrifos alone and in cerebellum of the combination nicotine and chlorpyrifos group. Histopathological evaluation demonstrated an increased neuronal cell death in the cerebellum granular cell layer of female offspring from nicotine or combined nicotine with chlorpyrifos group. A rise in glial fibrillary acidic protein (GFAP) immunostaining was observed in the CA1 subfield of hippocampus and cerebellum on PND 30 in female and male offspring of mothers treated with either nicotine or nicotine in combination with chlorpyrifos, but to a lesser extent in males. Data suggest that maternal exposure to nicotine and chlorpyrifos, alone or in combination, produces differential alterations in brain regional AChE activity and expression of GFAP in cerebellum and hippocampus in offspring on PND 30.


Journal of Toxicology and Environmental Health | 2000

Subchronic effects following a single sarin exposure on blood-brain and blood-testes barrier permeability, acetylcholinesterase, and acetylcholine receptors in the central nervous system of rat: a dose-response study.

Katherine H. Jones; Anjelika M. Dechkovskaia; Elizabeth A. Herrick; Ali Abdel-Rahman; Wasiuddin A. Khan; Mohamed B. Abou-Donia

Subchronic neurotoxic effects of sarin (O-isopropyl methylphosphonofluoridate) treatment at various doses in male Sprague Dawley rats were studied. The animals were treated with a single intramuscular (im) injection of 0.01, 0.1, 0.5, or 1 x LD50 (100 microg/kg). The animals were maintained for 90 d thereafter. [3H]Hexamethonium iodide was used to monitor the changes in blood-brain barrier (BBB) permeability in cortex, brainstem, midbrain, and cerebellum. Brainstem exhibited a significant decrease (approximately 58% of control) in uptake of [3H]hexamethonium iodide at 1 x LD50 dose. No significant changes were observed in BBB permeability in cortex, midbrain, and cerebellum at any dose. Plasma butyrylcholinesterase (BChE) activity remained unchanged, reflecting recovery of the enzyme activity from the initial inhibition following single exposure of 1 x LD50 sarin. Acetylcholinesterase (AChE) activity in the cortex remained inhibited (approximately 29%), whereas in the brainstem there was an increase (approximately 20%) at 1 x LD50 dose of sarin. The m2-selective muscarinic acetylcholine receptor (m2-mAChR) ligand binding was inhibited significantly at 1 x LD50 in the cortex, whereas brainstem showed significantly increased (approximately 45%) ligand binding at 1 x LD50 dose. Nicotinic acetylcholine receptor (nAChR), on the other hand, showed a biphasic response in ligand binding in the cortex with a decrease (approximately 30%) at 0.01 x LD50 but an increase (approximately 40%) at 1 x LD5O. Brainstem did not show any significant change in nAChR ligand binding. These results suggest that single exposure of sarin could lead to changes that may play an important role in neuropathological abnormalities in the central nervous system.

Collaboration


Dive into the Wasiuddin A. Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge