Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wataru Kamitani is active.

Publication


Featured researches published by Wataru Kamitani.


PLOS Pathogens | 2009

Rift Valley Fever Virus NSs Protein Promotes Post-Transcriptional Downregulation of Protein Kinase PKR and Inhibits eIF2α Phosphorylation

Tetsuro Ikegami; Krishna Narayanan; Sungyong Won; Wataru Kamitani; Clarence J. Peters; Shinji Makino

Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-β mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or α-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)–mediated eukaryotic initiation factor (eIF)2α phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2α accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2α phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2α phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation

Wataru Kamitani; Krishna Narayanan; Cheng Huang; Kumari Lokugamage; Tetsuro Ikegami; Naoto Ito; Hideyuki Kubo; Shinji Makino

Severe acute respiratory syndrome (SARS) coronavirus (SCoV) causes a recently emerged human disease associated with pneumonia. The 5′ end two-thirds of the single-stranded positive-sense viral genomic RNA, gene 1, encodes 16 mature proteins. Expression of nsp1, the most N-terminal gene 1 protein, prevented Sendai virus-induced endogenous IFN-β mRNA accumulation without inhibiting dimerization of IFN regulatory factor 3, a protein that is essential for activation of the IFN-β promoter. Furthermore, nsp1 expression promoted degradation of expressed RNA transcripts and host endogenous mRNAs, leading to a strong host protein synthesis inhibition. SCoV replication also promoted degradation of expressed RNA transcripts and host mRNAs, suggesting that nsp1 exerted its mRNA destabilization function in infected cells. In contrast to nsp1-induced mRNA destablization, no degradation of the 28S and 18S rRNAs occurred in either nsp1-expressing cells or SCoV-infected cells. These data suggested that, in infected cells, nsp1 promotes host mRNA degradation and thereby suppresses host gene expression, including proteins involved in host innate immune functions. SCoV nsp1-mediated promotion of host mRNA degradation may play an important role in SCoV pathogenesis.


Journal of Virology | 2008

Severe Acute Respiratory Syndrome Coronavirus nsp1 Suppresses Host Gene Expression, Including That of Type I Interferon, in Infected Cells

Krishna Narayanan; Cheng Huang; Kumari Lokugamage; Wataru Kamitani; Tetsuro Ikegami; Chien Te K Tseng; Shinji Makino

ABSTRACT The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.


Nature Structural & Molecular Biology | 2009

A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein

Wataru Kamitani; Cheng Huang; Krishna Narayanan; Kumari Lokugamage; Shinji Makino

Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression, including type I interferon production, by promoting host mRNA degradation and inhibiting host translation, in infected cells. We present evidence that nsp1 uses a novel, two-pronged strategy to inhibit host translation and gene expression. Nsp1 bound to the 40S ribosomal subunit and inactivated the translational activity of the 40S subunits. Furthermore, the nsp1–40S ribosome complex induced the modification of the 5′ region of capped mRNA template and rendered the template RNA translationally incompetent. Nsp1 also induced RNA cleavage in templates carrying the internal ribosome entry site (IRES) from encephalomyocarditis virus, but not in those carrying IRES elements from hepatitis C or cricket paralysis viruses, demonstrating that the nsp1-induced RNA modification was template-dependent. We speculate that the mRNAs that underwent the nsp1-mediated modification are marked for rapid turnover by the host RNA degradation machinery.


Journal of Virology | 2012

Establishment of a Novel Permissive Cell Line for the Propagation of Hepatitis C Virus by Expression of MicroRNA miR122

Hiroto Kambara; Takasuke Fukuhara; Mai Shiokawa; Chikako Ono; Yuri Ohara; Wataru Kamitani; Yoshiharu Matsuura

ABSTRACT The robust cell culture systems for hepatitis C virus (HCV) are limited to those using cell culture-adapted clones (HCV in cell culture [HCVcc]) and cells derived from the human hepatoma cell line Huh7. However, accumulating data suggest that host factors, including innate immunity and gene polymorphisms, contribute to the variation in host response to HCV infection. Therefore, the existing in vitro systems for HCV propagation are not sufficient to elucidate the life cycle of HCV. A liver-specific microRNA, miR122, has been shown to participate in the efficient replication of HCV. In this study, we examined the possibility of establishing a new permissive cell line for HCV propagation by the expression of miR122. A high level of miR122 was expressed by a lentiviral vector placed into human liver cell lines at a level comparable to the endogenous level in Huh7 cells. Among the cell lines that we examined, Hep3B cells stably expressing miR122 (Hep3B/miR122) exhibited a significant enhancement of HCVcc propagation. Surprisingly, the levels of production of infectious particles in Hep3B/miR122 cells upon infection with HCVcc were comparable to those in Huh7 cells. Furthermore, a line of “cured” cells, established by elimination of HCV RNA from the Hep3B/miR122 replicon cells, exhibited an enhanced expression of miR122 and a continuous increase of infectious titers of HCVcc in every passage. The establishment of the new permissive cell line for HCVcc will have significant implications not only for basic HCV research but also for the development of new therapeutics.


Annals of the New York Academy of Sciences | 2009

Dual functions of Rift Valley fever virus NSs protein: inhibition of host mRNA transcription and post-transcriptional downregulation of protein kinase PKR.

Tetsuro Ikegami; Krishna Narayanan; Sungyong Won; Wataru Kamitani; Clarence J. Peters; Shinji Makino

Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative‐stranded RNA virus carrying a single‐stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis, or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon‐β mRNAs. Here we demonstrated that the NSs protein induced post‐transcriptional downregulation of dsRNA‐dependent protein kinase (PKR), to prevent phosphorylation of eIF2α and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Glial expression of Borna disease virus phosphoprotein induces behavioral and neurological abnormalities in transgenic mice

Wataru Kamitani; Etsuro Ono; Saori Yoshino; Tsutomu Kobayashi; Satoshi Taharaguchi; Byeong Jae Lee; Makiko Yamashita; Takeshi Kobayashi; Minoru Okamoto; Hiroyuki Taniyama; Keizo Tomonaga; Kazuyoshi Ikuta

One hypothesis for the etiology of behavioral disorders is that infection by a virus induces neuronal cell dysfunctions resulting in a wide range of behavioral abnormalities. However, a direct linkage between viral infections and neurobehavioral disturbances associated with human psychiatric disorders has not been identified. Here, we show that transgenic mice expressing the phosphoprotein (P) of Borna disease virus (BDV) in glial cells develop behavioral abnormalities, such as enhanced intermale aggressiveness, hyperactivity, and spatial reference memory deficit. We demonstrate that the transgenic brains exhibit a significant reduction in brain-derived neurotrophic factor and serotonin receptor expression, as well as a marked decrease in synaptic density. These results demonstrate that glial expression of BDV P leads to behavioral and neurobiological disturbances resembling those in BDV-infected animals. Furthermore, the lack of reactive astrocytosis and neuronal degeneration in the brains indicates that P can directly induce glial cell dysfunction and also suggests that the transgenic mice may exhibit neuropathological and neurophysiological abnormalities resembling those of psychiatric patients. Our results provide a new insight to explore the relationship between viral infections and neurobehavioral disorders.


Journal of Virology | 2001

Borna disease virus phosphoprotein binds a neurite outgrowth factor, amphoterin/HMG-1.

Wataru Kamitani; Yuko Shoya; Takeshi Kobayashi; Makiko Watanabe; Byeong-Jae Lee; Guoqi Zhang; Keizo Tomonaga; Kazuyoshi Ikuta

ABSTRACT The Borna disease virus (BDV) p24 phosphoprotein is an abundant protein in BDV-infected cultured cells and animal brains. Therefore, there is a possibility that binding of the p24 protein to cellular factor(s) induces functional alterations of infected neural cells in the brain. To identify a cellular protein(s) that interacts with BDV p24 protein, we performed far-Western blotting with extracts from various cell lines. Using recombinant p24 protein as a probe, we detected a 30-kDa protein in all cell lines examined. Binding between the 30-kDa and BDV p24 proteins was also demonstrated using BDV p24 affinity and ion-exchange chromatography columns. Microsequence analysis of the purified 30-kDa protein revealed that its N terminus showed complete homology with rat amphoterin protein, which is a neurite outgrowth factor abundant in the brain during development. Mammalian two-hybrid and immunoprecipitation analyses also confirmed that amphoterin is a specific target for the p24 protein in vivo. Furthermore, we showed that infection by BDV, as well as purified p24 protein in the medium, significantly decreased cell process outgrowth of cells grown on laminin, indicating the functional inhibition of amphoterin by interaction with the p24 protein. Immunohistochemical analysis revealed decreased levels of amphoterin protein at the leading edges of BDV-infected cells. Moreover, the expression of the receptor for advanced glycation end products, of which the extracellular moiety is a receptor for amphoterin, was not significantly activated in BDV-infected cells during the process of extension, suggesting that the secretion of amphoterin from the cell surface is inhibited by the binding of the p24 protein. These results suggested that BDV infection may cause direct damage in the developing brain by inhibiting the function of amphoterin due to binding by the p24 phosphoprotein.


Journal of Virology | 2001

Borna Disease Virus Nucleoprotein Requires both Nuclear Localization and Export Activities for Viral Nucleocytoplasmic Shuttling

Takeshi Kobayashi; Wataru Kamitani; Guoqi Zhang; Makiko Watanabe; Keizo Tomonaga; Kazuyoshi Ikuta

ABSTRACT Nuclear transport of viral nucleic acids is crucial to the life cycle of many viruses. Borna disease virus (BDV) belongs to the orderMononegavirales and replicates its RNA genome in the nucleus. Previous studies have suggested that BDV nucleoprotein (N) and phosphoprotein (P) have important functions in the nuclear import of the viral ribonucleoprotein (RNP) complexes via their nuclear targeting activity. Here, we showed that BDV N has cytoplasmic localization activity, which is mediated by a nuclear export signal (NES) within the sequence. Our analysis using deletion and substitution mutants of N revealed that NES of BDV N consists of a canonical leucine-rich motif and that the nuclear export activity of the protein is mediated through the chromosome region maintenance protein-dependent pathway. Interspecies heterokaryon assay indicated that BDV N shuttles between the nucleus and cytoplasm as a nucleocytoplasmic shuttling protein. Furthermore, interestingly, the NES region overlaps a binding site to the BDV P protein, and nuclear export of a 38-kDa form of BDV N is prevented by coexpression of P. These results suggested that BDV N has two contrary activities, nuclear localization and export activity, and plays a critical role in the nucleocytoplasmic transport of BDV RNP by interaction with other viral proteins.


Veterinary Microbiology | 2000

Detection of Borna disease virus in a pregnant mare and her fetus

Katsuro Hagiwara; Wataru Kamitani; Shiki Takamura; Hiroyuki Taniyama; Takaaki Nakaya; Hidetoshi Tanaka; Rikio Kirisawa; Hiroshi Iwai; Kazuyoshi Ikuta

A pregnant mare showing pyrexia, reduced appetite, ataxia and paresis was euthanized and examined for the presence of Borna disease virus (BDV). Her brain, showing multiple neuronal degeneration and necrosis with hemorrhage, and the histologically normal brain of the fetus were both positive for BDV RNA. The BDV nucleotide sequences were identical in the mare and fetus in the second open reading frame (ORF). This is the first report of the possible vertical transmission of BDV in a horse.

Collaboration


Dive into the Wataru Kamitani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minoru Okamoto

Rakuno Gakuen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge