Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wataru Mizunoya is active.

Publication


Featured researches published by Wataru Mizunoya.


Nature Medicine | 2002

Inhibition of gastric inhibitory polypeptide signaling prevents obesity

Kazumasa Miyawaki; Yuichiro Yamada; Nobuhiro Ban; Yu Ihara; Katsushi Tsukiyama; Heying Zhou; Shimpei Fujimoto; Akira Oku; Kinsuke Tsuda; Shinya Toyokuni; Hiroshi Hiai; Wataru Mizunoya; Tohru Fushiki; Jens J. Holst; Mitsuhiro Makino; Akira Tashita; Yukari Kobara; Yoshiharu Tsubamoto; Takayoshi Jinnouchi; Takahito Jomori; Yutaka Seino

Secretion of gastric inhibitory polypeptide (GIP), a duodenal hormone, is primarily induced by absorption of ingested fat. Here we describe a novel pathway of obesity promotion via GIP. Wild-type mice fed a high-fat diet exhibited both hypersecretion of GIP and extreme visceral and subcutaneous fat deposition with insulin resistance. In contrast, mice lacking the GIP receptor (Gipr−/−) fed a high-fat diet were clearly protected from both the obesity and the insulin resistance. Moreover, double-homozygous mice (Gipr−/−, Lepob/Lepob) generated by crossbreeding Gipr−/− and obese ob/ob (Lepob/Lepob) mice gained less weight and had lower adiposity than Lepob/Lepob mice. The Gipr−/− mice had a lower respiratory quotient and used fat as the preferred energy substrate, and were thus resistant to obesity. Therefore, GIP directly links overnutrition to obesity and it is a potential target for anti-obesity drugs.


Journal of Clinical Investigation | 2008

FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets

Naonobu Nishino; Yoshikazu Tamori; Sanshiro Tateya; Takayuki Kawaguchi; Tetsuro Shibakusa; Wataru Mizunoya; Kazuo Inoue; Riko Kitazawa; Sohei Kitazawa; Yasushi Matsuki; Ryuji Hiramatsu; Satoru Masubuchi; Asako Omachi; Kazuhiro Kimura; Masayuki Saito; Taku Amo; Shigeo Ohta; Tomohiro Yamaguchi; Takashi Osumi; Jinglei Cheng; Toyoshi Fujimoto; Harumi Nakao; Kazuki Nakao; Atsu Aiba; Hitoshi Okamura; Tohru Fushiki; Masato Kasuga

White adipocytes are unique in that they contain large unilocular lipid droplets that occupy most of the cytoplasm. To identify genes involved in the maintenance of mature adipocytes, we expressed dominant-negative PPARgamma in 3T3-L1 cells and performed a microarray screen. The fat-specific protein of 27 kDa (FSP27) was strongly downregulated in this context. FSP27 expression correlated with induction of differentiation in cultured preadipocytes, and the protein localized to lipid droplets in murine white adipocytes in vivo. Ablation of FSP27 in mice resulted in the formation of multilocular lipid droplets in these cells. Furthermore, FSP27-deficient mice were protected from diet-induced obesity and insulin resistance and displayed an increased metabolic rate due to increased mitochondrial biogenesis in white adipose tissue (WAT). Depletion of FSP27 by siRNA in murine cultured white adipocytes resulted in the formation of numerous small lipid droplets, increased lipolysis, and decreased triacylglycerol storage, while expression of FSP27 in COS cells promoted the formation of large lipid droplets. Our results suggest that FSP27 contributes to efficient energy storage in WAT by promoting the formation of unilocular lipid droplets, thereby restricting lipolysis. In addition, we found that the nature of lipid accumulation in WAT appears to be associated with maintenance of energy balance and insulin sensitivity.


American Journal of Physiology-cell Physiology | 2010

High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo

Michiko Yamada; Ryuichi Tatsumi; Keitaro Yamanouchi; Tohru Hosoyama; Sei-ichi Shiratsuchi; Akiko Sato; Wataru Mizunoya; Yoshihide Ikeuchi; Mitsuhiro Furuse; Ronald E. Allen

Skeletal muscle regeneration and work-induced hypertrophy rely on molecular events responsible for activation and quiescence of resident myogenic stem cells, satellite cells. Recent studies demonstrated that hepatocyte growth factor (HGF) triggers activation and entry into the cell cycle in response to mechanical perturbation, and that subsequent expression of myostatin may signal a return to cell quiescence. However, mechanisms responsible for coordinating expression of myostatin after an appropriate time lag following activation and proliferation are not clear. Here we address the possible role of HGF in quiescence through its concentration-dependent negative-feedback mechanism following satellite cell activation and proliferation. When activated/proliferating satellite cell cultures were treated for 24 h beginning 48-h postplating with 10-500 ng/ml HGF, the percentage of bromodeoxyuridine-incorporating cells decreased down to a baseline level comparable to 24-h control cultures in a HGF dose-dependent manner. The high level HGF treatment did not impair the cell viability and differentiation levels, and cells could be reactivated by lowering HGF concentrations to 2.5 ng/ml, a concentration that has been shown to optimally stimulate activation of satellite cells in culture. Coaddition of antimyostatin neutralizing antibody could prevent deactivation and abolish upregulation of cyclin-dependent kinase (Cdk) inhibitor p21. Myostatin mRNA expression was upregulated with high concentrations of HGF, as demonstrated by RT-PCR, and enhanced myostatin protein expression and secretion were revealed by Western blots of the cell lysates and conditioned media. These results indicate that HGF could induce satellite cell quiescence by stimulating myostatin expression. The HGF concentration required (over 10-50 ng/ml), however, is much higher than that for activation, which is initiated by rapid release of HGF from its extracellular association. Considering that HGF is produced by satellite cells and spleen and liver cells in response to muscle damage, local concentrations of HGF bathing satellite cells may reach a threshold sufficient to induce myostatin expression. This time lag may delay action of the quiescence signaling program in proliferating satellite cells during initial phases of muscle regeneration followed by induction of quiescence in a subset of cells during later phases.


Analytical Biochemistry | 2008

Protocol for high-resolution separation of rodent myosin heavy chain isoforms in a mini-gel electrophoresis system

Wataru Mizunoya; Jun ichiro Wakamatsu; Ryuichi Tatsumi; Yoshihide Ikeuchi

Skeletal muscle comprises several fiber types classified based on their contractile and metabolic properties. Skeletal muscle fiber types are classified according to their myosin heavy chain isoforms (MyHC I, IIa, IIx, and IIb). We attained good separation of MyHC isoforms in a mini-gel system by modifying a previously developed electrophoresis protocol. Increased glycerol and decreased cross-linking agent concentrations improved the separation of MyHC isoforms. Sample preparation with dithiothreitol and protease inhibitors produced clear MyHC band boundaries. This protocol included silver staining, with a linear range. The protocol provided high resolution and a highly accurate assay of rodent MyHC isoforms.


Muscle & Nerve | 2006

Matrix metalloproteinases are involved in mechanical stretch-induced activation of skeletal muscle satellite cells.

Michiko Yamada; Ryuichi Tatsumi; Takashi Kikuiri; Shinpei Okamoto; Shinsuke Nonoshita; Wataru Mizunoya; Yoshihide Ikeuchi; Hiroaki Shimokawa; Kenji Sunagawa; Ronald E. Allen

When skeletal muscle is stretched or injured, myogenic satellite cells are activated to enter the cell cycle. This process depends on nitric oxide (NO) production, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the c‐met receptor. Experiments reported herein provide new evidence that matrix metalloproteinases (MMPs) are involved in the NO‐dependent release of HGF in vitro. When rat satellite cells were treated with 10 ng/ml recombinant tissue inhibitor‐1 of MMPs (TIMP‐1) and subjected to treatments that induce activation in vitro, i.e., sodium nitroprusside (SNP) of an NO donor or mechanical cyclic stretch, the activation response was inhibited. In addition, conditioned medium generated by cultures treated with TIMP‐1 plus SNP or mechanical stretch failed to activate cultured satellite cells and did not contain HGF. Moreover, NOx assay demonstrated that TIMP‐1 does not impair NO synthase activity of stretched satellite cell cultures. Therefore, results from these experiments provide strong evidence that MMPs mediate HGF release from the matrix and that this step in the pathway is downstream from NO synthesis. Muscle Nerve, 2006


The International Journal of Biochemistry & Cell Biology | 2008

Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner.

Michiko Yamada; Yoriko Sankoda; Ryuichi Tatsumi; Wataru Mizunoya; Yoshihide Ikeuchi; Kenji Sunagawa; Ronald E. Allen

When skeletal muscle is stretched or injured, myogenic satellite cells are activated to enter the cell cycle. This process depends on nitric oxide (NO) production, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the c-met receptor. Matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases, mediate HGF release from the matrix and this step in the pathway is downstream from NO synthesis [Yamada, M., Tatsumi, R., Kikuiri, T., Okamoto, S., Nonoshita, S., Mizunoya, W., et al. (2006). Matrix metalloproteinases are involved in mechanical stretch-induced activation of skeletal muscle satellite cells. Muscle Nerve, 34, 313-319]. Experiments reported herein provide evidence that MMP2 may be involved in the NO-dependent release of HGF in vitro. Whole lysate analyses of satellite cells demonstrated the presence of MMP2 mRNA and the protein. When rat satellite cells were treated with 30 microM sodium nitroprusside a NO donor or mechanical cyclic stretch for 2h period, inactive proMMP2 (72 kDa) was converted into 52-kDa form and this processing was abolished by adding a NO synthase inhibitor l-NAME (10 microM) to the stretch culture. The 52-kDa species was also generated by treatment of the recombinant MMP2 protein with 1 microM NOC-7 that can spontaneously release NO under physiological conditions without any cofactor, and its activating activity was demonstrated by applying the NOC-7-treated MMP2 to satellite cell culture. HGF release was detected in NOC-7-MMP2-conditioned media by western blotting; very little HGF was found in media that were generated from cultures receiving NOC-7-treated MMP2 (10 ng/ml) plus 250 ng/ml tissue inhibitor-1 of metalloproteinases. Therefore, results from these experiments provide evidence that NO-activated MMP2 may cause release of HGF from the extracellular matrix of satellite cells and contribute to satellite cell activation.


American Journal of Physiology-cell Physiology | 2009

Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation

Ryuichi Tatsumi; Yoriko Sankoda; Judy E. Anderson; Yusuke Sato; Wataru Mizunoya; Naomi Shimizu; Takahiro Suzuki; Michiko Yamada; Robert P. Rhoads; Yoshihide Ikeuchi; Ronald E. Allen

Regenerative coordination and remodeling of the intramuscular motoneuron network and neuromuscular connections are critical for restoring skeletal muscle function and physiological properties. The regulatory mechanisms of such coordination remain unclear, although both attractive and repulsive axon guidance molecules may be involved in the signaling pathway. Here we show that expression of a neural secreted chemorepellent semaphorin 3A (Sema3A) is remarkably upregulated in satellite cells of resident myogenic stem cells that are positioned beneath the basal lamina of mature muscle fibers, when treated with hepatocyte growth factor (HGF), established as an essential cue in muscle fiber growth and regeneration. When satellite cells were treated with HGF in primary cultures of cells or muscle fibers, Sema3A message and protein were upregulated as revealed by reverse transcription-polymerase chain reaction and immunochemical studies. Other growth factors had no inductive effect except for a slight effect of epidermal growth factor treatment. Sema3A upregulation was HGF dose dependent with a maximum (about 7- to 8-fold units relative to the control) at 10-25 ng/ml and occurred exclusively at the early-differentiation stage, as characterized by the level of myogenin expression and proliferation (bromodeoxyuridine incorporation) of the cells. Neutralizing antibody to the HGF-specific receptor, c-met, did not abolish the HGF response, indicating that c-met may not mediate the Sema3A expression signaling. Finally, in vivo Sema3A was upregulated in the differentiation phase of satellite cells isolated from muscle regenerating following crush injury. Overall, the data highlight a heretofore unexplored and active role for satellite cells as a key source of Sema3A expression triggered by HGF, hence suggesting that regenerative activity toward motor innervation may importantly reside in satellite cells and could be a crucial contributor during postnatal myogenesis.


The Journal of Neuroscience | 2008

Enhanced Adult Neurogenesis and Angiogenesis and Altered Affective Behaviors in Mice Overexpressing Vascular Endothelial Growth Factor 120

Hiroshi Udo; Yuka Yoshida; Takako Kino; Koichiro Ohnuki; Wataru Mizunoya; Takao Mukuda; Hiroyuki Sugiyama

Vascular endothelial growth factor (VEGF) is implicated as a molecular mediator for adult neurogenesis and behavioral effects of antidepressant drugs. However, these potential roles of VEGF in the CNS have not been clarified in model animals. Here we have created transgenic mice overexpressing a short active variant of VEGF-A (VEGF120) in forebrain. Expression of VEGF120 significantly enhanced cell proliferation and angiogenesis, as exemplified by the formation of an enlarged reddish brain. Adult neurogenesis in hippocampus was markedly stimulated without affecting cell differentiation of neural progenitor cells. Hippocampal neurogenesis was particularly robust in young adult animals, but it declined with age and reduced to control levels by 20 weeks under continuous expression of VEGF120. Thus, VEGF alone is not sufficient to support the long-term enhancement of adult neurogenesis, and VEGF-induced vascularization per se does not necessarily predict increased neurogenesis. In transgenic mice, we observed significant changes in affective behaviors. VEGF was found to have not only antidepressant effects but also anxiolytic effects. In addition, we found that VEGF significantly reduced fear and aggression. In contrast, basal activities under natural conditions were not affected much. Unexpectedly, these characteristic behaviors were maintained in older transgenic mice undergoing a reduced level of cell proliferation in hippocampus, suggesting that there is potential dissociation between adult neurogenesis and mood regulation. Our data indicate that VEGF exerts strong neurogenic and angiogenic effects in postnatal brain and influences different forms of affective behaviors.


Lipids | 2005

Dietary conjugated linoleic acid increases endurance capacity and fat oxidation in mice during exercise.

Wataru Mizunoya; Satoshi Haramizu; Tetsuro Shibakusa; Yuki Okabe; Tohru Fushiki

Ingestion of CLA activates β-oxidation and causes loss of body fat in rodents. We investigated the effects of dietary CLA on endurance capacity and energy metabolism during exercis in mice. Five-week-old male BALB/c mice were fed a control diet containing 1.0% linoleic acid or a diet containing 0.5% CLA that replaced an equivalent amount of linoleic acid for 1 wk. The maximum swimming time until fatigue was significantly higher in the CLA-fed group than in the control group. During treadmill running, the respiratory exchange ratio was significantly lower in the CLA-fed group, but oxygen consumption did not differ significantly between groups, suggesting that FA contributed more as an energy substrate in the CLA-fed mice. The muscle lipoprotein lipase activity was significantly higher in the CLA-fed group than in the control group. These results suggest that CLA ingestion increases endurance exercise capacity by promoting fat oxidation during exercise.


Biochemical and Biophysical Research Communications | 2008

Inhibition of GIP signaling modulates adiponectin levels under high-fat diet in mice.

Rei Naitoh; Kazumasa Miyawaki; Norio Harada; Wataru Mizunoya; Kentaro Toyoda; Tohru Fushiki; Yuichiro Yamada; Yutaka Seino; Nobuya Inagaki

Gastric inhibitory polypeptide (GIP) is an incretin and directly promotes fat accumulation in adipocytes. Inhibition of GIP signaling prevents onset of obesity and increases fat oxidation in peripheral tissues under high-fat diet (HFD), but the mechanism is unknown. In the present study, we investigated the effects of inhibition of GIP signaling on adiponectin levels after 3 weeks of HFD by comparing wild-type (WT) mice and GIP receptor-deficient (Gipr(-/-)) mice. In HFD-fed Gipr(-/-) mice, fat oxidation was significantly increased and adiponectin mRNA levels in white adipose tissue and plasma adiponectin levels were significantly increased compared to those in HFD-fed WT mice. In addition, the PPARalpha mRNA level was increased and the ACC mRNA level was decreased in skeletal muscle of HFD-fed Gipr(-/-) mice compared with those in HFD-fed WT mice. These results indicate that inhibition of GIP signaling increases adiponectin levels, resulting in increased fat oxidation in peripheral tissues under HFD.

Collaboration


Dive into the Wataru Mizunoya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takahiro Suzuki

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Yusuke Sato

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge