Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wataru Ochiai is active.

Publication


Featured researches published by Wataru Ochiai.


Evidence-based Complementary and Alternative Medicine | 2011

Anti-Obesity and Anti-Diabetic Effects of Acacia Polyphenol in Obese Diabetic KKAy Mice Fed High-Fat Diet

Nobutomo Ikarashi; Takahiro Toda; Takehiro Okaniwa; Kiyomi Ito; Wataru Ochiai; Kiyoshi Sugiyama

Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia meansii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. The present study investigated the anti-obesity/anti-diabetic effects of AP using obese diabetic KKAy mice. KKAy mice received either normal diet, high-fat diet or high-fat diet with additional AP for 7 weeks. After the end of administration, body weight, plasma glucose and insulin were measured. Furthermore, mRNA and protein expression of obesity/diabetic suppression-related genes were measured in skeletal muscle, liver and white adipose tissue. As a result, compared to the high-fat diet group, increases in body weight, plasma glucose and insulin were significantly suppressed for AP groups. Furthermore, compared to the high-fat diet group, mRNA expression of energy expenditure-related genes (PPARα, PPARδ, CPT1, ACO and UCP3) was significantly higher for AP groups in skeletal muscle. Protein expressions of CPT1, ACO and UCP3 for AP groups were also significantly higher when compared to the high-fat diet group. Moreover, AP lowered the expression of fat acid synthesis-related genes (SREBP-1c, ACC and FAS) in the liver. AP also increased mRNA expression of adiponectin and decreased expression of TNF-α in white adipose tissue. In conclusion, the anti-obesity actions of AP are considered attributable to increased expression of energy expenditure-related genes in skeletal muscle, and decreased fatty acid synthesis and fat intake in the liver. These results suggest that AP is expected to be a useful plant extract for alleviating metabolic syndrome.


Evidence-based Complementary and Alternative Medicine | 2011

The inhibition of lipase and glucosidase activities by acacia polyphenol.

Nobutomo Ikarashi; Rumi Takeda; Kiyomi Ito; Wataru Ochiai; Kiyoshi Sugiyama

Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia mearnsii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. In an in vitro study, we measured the inhibitory activity of AP on lipase and glucosidase. In addition, we evaluated the effects of AP on absorption of orally administered olive oil, glucose, maltose, sucrose and starch solution in mice. We found that AP concentration-dependently inhibited the activity of lipase, maltase and sucrase with an IC50 of 0.95, 0.22 and 0.60 mg ml−1, respectively. In ICR mice, olive oil was administered orally immediately after oral administration of AP solution, and plasma triglyceride concentration was measured. We found that AP significantly inhibited the rise in plasma triglyceride concentration after olive oil loading. AP also significantly inhibited the rise in plasma glucose concentration after maltose and sucrose loading, and this effect was more potent against maltose. AP also inhibited the rise in plasma glucose concentration after glucose loading and slightly inhibited it after starch loading. Our results suggest that AP inhibits lipase and glucosidase activities, which leads to a reduction in the intestinal absorption of lipids and carbohydrates.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

The laxative effect of bisacodyl is attributable to decreased aquaporin-3 expression in the colon induced by increased PGE2 secretion from macrophages.

Nobutomo Ikarashi; Kohta Baba; Takashi Ushiki; Risako Kon; Ayako Mimura; Takahiro Toda; Makoto Ishii; Wataru Ochiai; Kiyoshi Sugiyama

The purpose of this study was to investigate the role of aquaporin3 (AQP3) in the colon in the laxative effect of bisacodyl. After oral administration of bisacodyl to rats, AQP3, macrophages, cyclooxygenase 2 (COX2), and prostaglandin E(2) (PGE(2)) were examined in the colon. The mechanism by which bisacodyl decreases the expression of AQP3 was examined using HT-29 and Raw264.7 cells. When diarrhea occurred, a significant increase in the expression of PGE(2) and a decrease in AQP3 expression were observed. Immunostaining showed COX2 expression only in macrophages. The PGE(2) concentration increased significantly 30 min after the addition of bisacodyl to Raw264.7 cells. Thirty minutes after PGE(2) addition to HT-29 cells, the AQP3 expression level decreased to 40% of the control. When pretreated with indomethacin, bisacodyl did not induce an increase in the colon PGE(2) level, a decrease in the AQP3 expression level, or diarrhea. The results suggest that bisacodyl may decrease the expression of AQP3 in the colon, which inhibits water transfer from the luminal to the vascular side and leads to a laxative effect. This study also showed that direct activation of colon macrophages by bisacodyl increases the secretion of PGE(2), which acts as a paracrine factor and decreases AQP3 expression in colon mucosal epithelial cells.


Journal of Ethnopharmacology | 2014

Rheinanthrone, a metabolite of sennoside A, triggers macrophage activation to decrease aquaporin-3 expression in the colon, causing the laxative effect of rhubarb extract

Risako Kon; Nobutomo Ikarashi; Chika Nagoya; Tomoko Takayama; Yoshiki Kusunoki; Makoto Ishii; Harumi Ueda; Wataru Ochiai; Yoshiaki Machida; Kazuyuki Sugita; Kiyoshi Sugiyama

ETHNOPHARMACOLOGICAL RELEVANCE Aquaporin-3 (AQP3) is expressed in mucosal epithelial cells in the colon and is important for regulating fecal water content. We examined the role of AQP3 in the laxative effect of rhubarb extract. METHODS After orally administering rhubarb extract or its major component (sennoside A) to rats, the fecal water content, AQP3 expression and prostaglandin E2 (PGE2) concentrations in the colon were examined. The mechanism by which sennoside A decreases the expression of AQP3 was examined using the human colon cancer HT-29 cells and macrophage-derived Raw264.7 cells. RESULTS During diarrhea by rhubarb extract administration, the PGE2 levels in the colon increased while the AQP3 expression significantly decreased. Similar changes were also observed when sennoside A was administered. When sennoside A or its metabolites, rheinanthrone and rhein were added to Raw264.7 cells, a significant increase in the PGE2 concentration was observed only in cells treated with rheinanthrone. Fifteen minutes after adding PGE2 to the HT-29 cells, the AQP3 expression decreased to approximately 40% of the control. When pretreated with indomethacin, sennoside A neither decreased the AQP3 expression nor induced diarrhea. CONCLUSIONS Sennoside A may decrease AQP3 expression in the colon to inhibit water transport from the luminal to the vascular side, leading to a laxative effect. The decreases in the levels of AQP3 are caused by rheinanthrone, which is a metabolite of sennoside A, this metabolite activates the macrophages in the colon and increases the secretion of PGE2; PGE2 acts as a paracrine factor and decreases AQP3 expression in colon mucosal epithelial cells.


Life Sciences | 2011

A mechanism by which the osmotic laxative magnesium sulphate increases the intestinal aquaporin 3 expression in HT-29 cells.

Nobutomo Ikarashi; Toshihide Mochiduki; Ayaka Takasaki; Takashi Ushiki; Kohta Baba; Makoto Ishii; Toshiyuki Kudo; Kiyomi Ito; Takahiro Toda; Wataru Ochiai; Kiyoshi Sugiyama

AIMS We have suggested that an osmotic laxative, magnesium sulphate (MgSO(4)), may act as a cathartic in a very rational manner by increasing the aquaporin 3 (AQP3) expression level and by changing osmotic pressure in the colon. In this study, we examined the mechanism by which MgSO(4) increases the intestinal AQP3 expression level by using the human colon cancer HT-29 cell line. MAIN METHODS After the addition of MgSO(4) to HT-29 cells, the expression levels of AQP3 mRNA and protein were measured using real-time RT-PCR and western blotting, respectively. The intracellular Mg(2+) concentration, adenylate cyclase (AC) activity and protein kinase A (PKA) activity were also determined. The phosphorylated cAMP response element-binding protein (CREB) expression levels were determined by western blotting. KEY FINDINGS The AQP3 mRNA expression level started to increase significantly at 1 h after MgSO(4) addition and peaked at 9 h, at a level 3 times as high as the control levels. The AQP3 protein expression level started to increase 6 h after the addition and reached a level almost twice as high as the control levels by hour 12. In the HT-29 cells treated with MgSO(4), there was a 1.4-fold increase in the intracellular Mg(2+) concentration, a 1.5-fold increase in AC activity, a 1.6-fold increase in PKA activity, and a significant increase in phosphorylation of the CREB. SIGNIFICANCE These results suggest that the AC activation caused by an increase in the intracellular Mg(2+) concentration may trigger CREB phosphorylation through PKA activation and promote AQP3 gene transcription.


Phytotherapy Research | 2012

Inhibition of Preadipocyte Differentiation and Lipid Accumulation by Orengedokuto Treatment of 3T3-L1 Cultures

Nobutomo Ikarashi; Masataka Tajima; Kunihiro Suzuki; Takahiro Toda; Kiyomi Ito; Wataru Ochiai; Kiyoshi Sugiyama

Obesity is a major cause of metabolic syndrome and is due to an increase in the number and hypertrophy of adipocytes. Accordingly, inhibition of the differentiation and proliferation of adipocytes may be used in the treatment and prevention of metabolic syndrome. This study investigated the effects of 50 commonly used Kampo medicines on the differentiation of 3T3‐L1 preadipocytes to search for a drug with an antiobesity effect. Kampo medicines were screened, and the strongest differentiation‐inhibitory effect was noted with Orengedokuto. To explore the active ingredients in Orengedokuto, the effects of four crude drug components of Orengedokuto were investigated. It was found that the differentiation‐inhibitory effect of Orengedokuto was accounted for by Coptidis rhizome and Phellodendri cortex. Furthermore, berberine, a principal ingredient common to Coptidis rhizome and Phellodendri cortex, showed a differentiation‐inhibitory effect. The effect of berberine involves an inhibition of the mRNA and protein expression of peroxisome proliferator‐activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα). Moreover, berberine inhibited lipid accumulation in adipocytes. These findings suggest that an antiobesity effect could be a new indication for Orengedokuto and that its active ingredient is berberine, with a mechanism involving the inhibition of PPARγ and C/EBPα expression. Copyright


Xenobiotica | 2009

Altered expression of CYP in TSOD mice: a model of type 2 diabetes and obesity

Toshiyuki Kudo; Tsutomu Shimada; Takahiro Toda; S. Igeta; W. Suzuki; Nobutomo Ikarashi; Wataru Ochiai; Kiyomi Ito; Masaki Aburada; Kiyoshi Sugiyama

To investigate the pharmacokinetic characteristics in TSOD (Tsumura, Suzuki, obese, diabetes) mice, a model of type 2 diabetes and obesity, the expressions of major hepatic CYP enzymes in TSOD and TSNO (Tsumura, Suzuki, non-obesity; control) mice were compared. The 7-month-old TSOD mice, which represented severe obesity/diabetes-related pathophysiology, showed higher expressions of Cyp2c and Cyp3a compared with TSNO mice, while those of Cyp1a and Cyp2e were lower. Cyp3a metabolic activity was also higher in TSOD mice. In the 7-month-old liver, pregnane X receptor (PXR) (nuclear receptor) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) (cofactor) mRNA expression were higher in TSOD mice, possibly playing a role in the altered expression of Cyp3a. This specifically altered CYP expression in TSOD mice suggests that the biotransformation of drugs metabolized by these CYP enzymes differs from that in normal animals. Based on these findings, further investigation on the relationship between altered CYP expression and pathophysiology may be useful in elucidating changes in pharmacokinetics in obese/diabetic patients.


European Journal of Pharmaceutical Sciences | 2014

Hepatic early inflammation induces downregulation of hepatic cytochrome P450 expression and metabolic activity in the dextran sulfate sodium-induced murine colitis.

Yoshiki Kusunoki; Nobutomo Ikarashi; Yoshitaka Hayakawa; Makoto Ishii; Risako Kon; Wataru Ochiai; Yoshiaki Machida; Kiyoshi Sugiyama

Ulcerative colitis (UC) patients may have increased concentrations of drugs in their blood. We hypothesized that this response is mainly due to a decrease in the expression and activity of the drug-metabolizing enzyme, cytochrome P450 (CYP), in the liver. In this study, we have tried to demonstrate the hypothesis. UC was induced in mice by treatment with dextran sulfate sodium (DSS) solution. The mRNA and protein expression levels of CYP, inflammatory cytokine levels, and the metabolic activity of CYP3A in the liver were measured. The nuclear translocations of nuclear factor kappa B (NF-κB), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) were analyzed. The levels of hepatic inflammatory cytokines increased in the DSS-treated group. The hepatic mRNA and protein expression of CYP (CYP1A, CYP2C, CYP2D, CYP2E, and CYP3A) and the CYP3A metabolic activity significantly decreased compared to the control group. Hepatic NF-κB nuclear translocation significantly increased in the DSS-treated group. In contrast, the nuclear translocations of PXR and CAR were decreased. Lipopolysaccharides from inflammatory sites in the colon induce hepatic inflammation in DSS-induced murine colitis. This inflammation then causes an increase in the nuclear translocation of hepatic NF-κB and a decrease in the nuclear translocation of PXR and CAR, resulting in the decreased expression and activities of CYP. The results of this study indicated that at the onset of UC, the decreased activity of hepatic CYP causes an increase in the concentrations of drugs in the blood, leading to an increase in the incidence of adverse reactions.


Toxicological Sciences | 2015

Morphine-induced constipation develops with increased aquaporin-3 expression in the colon via increased serotonin secretion

Risako Kon; Nobutomo Ikarashi; Akio Hayakawa; Yusuke Haga; Aika Fueki; Yoshiki Kusunoki; Masataka Tajima; Wataru Ochiai; Yoshiaki Machida; Kiyoshi Sugiyama

Aquaporin-3 (AQP3) is a water channel that is predominantly expressed in the colon, where it plays a critical role in the regulation of fecal water content. This study investigated the role of AQP3 in the colon in morphine-induced constipation. AQP3 expression levels in the colon were analyzed after oral morphine administration to rats. The degree of constipation was analyzed after the combined administration of HgCl(2) (AQP3 inhibitor) or fluoxetine (5-HT reuptake transporter [SERT] inhibitor) and morphine. The mechanism by which morphine increased AQP3 expression was examined in HT-29 cells. AQP3 expression levels in rat colon were increased during morphine-induced constipation. The combination of HgCl(2) and morphine improved morphine-induced constipation. Treatment with morphine in HT-29 cells did not change AQP3 expression. However, 5-HT treatment significantly increased the AQP3 expression level and the nuclear translocation of peroxisome proliferator-activated receptor gamma (PPARγ) 1 h after treatment. Pretreatment with fluoxetine significantly suppressed these increases. Fluoxetine pretreatment suppressed the development of morphine-induced constipation and the associated increase in AQP3 expression in the colon. The results suggest that morphine increases the AQP3 expression level in the colon, which promotes water absorption from the luminal side to the vascular side and causes constipation. This study also showed that morphine-induced 5-HT secreted from the colon was taken into cells by SERT and activated PPARγ, which subsequently increased AQP3 expression levels.


Life Sciences | 2010

The role of renal aquaporin 2 in the alleviation of dehydration associated with diabetic polyuria in KKAy mice

Masako Satake; Nobutomo Ikarashi; Yuhei Ichikawa; Ayaka Maniwa; Takahiro Toda; Kiyomi Ito; Wataru Ochiai; Kiyoshi Sugiyama

AIMS Polyuria is a symptom that appears in association with diabetes mellitus. Because sustained polyuria causes serious dehydration, it is believed that the body has a compensating mechanism to alleviate dehydration. In the present study, the role of renal aquaporin 2 (AQP2) in the compensating mechanism was investigated in KKAy mice, a type 2 diabetes model. MAIN METHODS The renal AQP2 expression levels in KKAy mice aged between 5 and 24 weeks were determined using Western blotting. The hypothalamic vasopressin mRNA expression levels also were measured by real-time RT-PCR. Insulin was subcutaneously administered to 11-week-old KKAy mice twice a day for 7 days. After insulin treatment, the renal AQP2 protein expression and the hypothalamic vasopressin mRNA expression were measured. KEY FINDINGS The urinary volumes of 5- and 12-week-old KKAy mice were 1.5 ± 0.3 mL and 9.5 ± 1.2 mL, respectively. The inner medullary AQP2 protein expression of 12-week-old KKAy mice was approximately 2.5-fold higher than that of 5-week-old KKAy mice. The hypothalamic vasopressin mRNA expression of 12-week-old KKAy mice was approximately twice that of 5-week-old KKAy mice. Insulin treatment in KKAy mice resulted in a significant reduction in the plasma glucose level, urinary volume, and inner medullary AQP2 protein and hypothalamic vasopressin mRNA expression. SIGNIFICANCE The present study demonstrated that AQP2 is a renal functional molecule of vasopressin that controls urinary volume and that AQP2 in the kidney increases to alleviate dehydration due to type 2 diabetes with polyuria.

Collaboration


Dive into the Wataru Ochiai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge