Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Way Sung is active.

Publication


Featured researches published by Way Sung.


Science | 2011

The ecoresponsive genome of Daphnia pulex

John K. Colbourne; Michael E. Pfrender; Donald L. Gilbert; W. Kelley Thomas; Abraham Tucker; Todd H. Oakley; Shin-ichi Tokishita; Andrea Aerts; Georg J. Arnold; Malay Kumar Basu; Darren J Bauer; Carla E. Cáceres; Liran Carmel; Claudio Casola; Jeong Hyeon Choi; John C. Detter; Qunfeng Dong; Serge Dusheyko; Brian D. Eads; Thomas Fröhlich; Kerry A. Geiler-Samerotte; Daniel Gerlach; Phil Hatcher; Sanjuro Jogdeo; Jeroen Krijgsveld; Evgenia V. Kriventseva; Dietmar Kültz; Christian Laforsch; Erika Lindquist; Jacqueline Lopez

The Daphnia genome reveals a multitude of genes and shows adaptation through gene family expansions. We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia’s genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A genome-wide view of the spectrum of spontaneous mutations in yeast

Michael Lynch; Way Sung; Krystalynne Morris; Nicole Coffey; Christian R. Landry; Erik B. Dopman; W. Joseph Dickinson; Kazufusa Okamoto; Shilpa Kulkarni; Daniel L. Hartl; W. Kelley Thomas

The mutation process ultimately defines the genetic features of all populations and, hence, has a bearing on a wide range of issues involving evolutionary genetics, inheritance, and genetic disorders, including the predisposition to cancer. Nevertheless, formidable technical barriers have constrained our understanding of the rate at which mutations arise and the molecular spectrum of their effects. Here, we report on the use of complete-genome sequencing in the characterization of spontaneously arising mutations in the yeast Saccharomyces cerevisiae. Our results confirm some findings previously obtained by indirect methods but also yield numerous unexpected findings, in particular a very high rate of point mutation and skewed distribution of base-substitution types in the mitochondrion, a very high rate of segmental duplication and deletion in the nuclear genome, and substantial deviations in the mutational profile among various model organisms.


Molecular Ecology | 2010

Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises

Simon Creer; V. G. Fonseca; Dorota L. Porazinska; Robin M. Giblin-Davis; Way Sung; Deborah M. Power; Margaret Packer; Gary R. Carvalho; Mark Blaxter; P.J.D. Lambshead; W. K. Thomas

Biodiversity assessment is the key to understanding the relationship between biodiversity and ecosystem functioning, but there is a well‐acknowledged biodiversity identification gap related to eukaryotic meiofaunal organisms. Meiofaunal identification is confounded by the small size of taxa, morphological convergence and intraspecific variation. However, the most important restricting factor in meiofaunal ecological research is the mismatch between diversity and the number of taxonomists that are able to simultaneously identify and catalogue meiofaunal diversity. Accordingly, a molecular operational taxonomic unit (MOTU)‐based approach has been advocated for en mass meiofaunal biodiversity assessment, but it has been restricted by the lack of throughput afforded by chain termination sequencing. Contemporary pyrosequencing offers a solution to this problem in the form of environmental metagenetic analyses, but this represents a novel field of biodiversity assessment. Here, we provide an overview of meiofaunal metagenetic analyses, ranging from sample preservation and DNA extraction to PCR, sequencing and the bioinformatic interrogation of multiple, independent samples using 454 Roche sequencing platforms. We report two examples of environmental metagenetic nuclear small subunit 18S (nSSU) analyses of marine and tropical rainforest habitats and provide critical appraisals of the level of putative recombinant DNA molecules (chimeras) in metagenetic data sets. Following stringent quality control measures, environmental metagenetic analyses achieve MOTU formation across the eukaryote domain of life at a fraction of the time and cost of traditional approaches. The effectiveness of Roche 454 sequencing brings substantial advantages to studies aiming to elucidate the molecular genetic richness of not only meiofaunal, but also all complex eukaryotic communities.


Nature Communications | 2010

Second-generation environmental sequencing unmasks marine metazoan biodiversity

Vera G. Fonseca; Gary R. Carvalho; Way Sung; Harriet F. Johnson; Deborah M. Power; Simon P. Neill; Margaret Packer; Mark Blaxter; P John D Lambshead; W. Kelley Thomas; Simon Creer

Biodiversity is of crucial importance for ecosystem functioning, sustainability and resilience, but the magnitude and organization of marine diversity at a range of spatial and taxonomic scales are undefined. In this paper, we use second-generation sequencing to unmask putatively diverse marine metazoan biodiversity in a Scottish temperate benthic ecosystem. We show that remarkable differences in diversity occurred at microgeographical scales and refute currently accepted ecological and taxonomic paradigms of meiofaunal identity, rank abundance and concomitant understanding of trophic dynamics. Richness estimates from the current benchmarked Operational Clustering of Taxonomic Units from Parallel UltraSequencing analyses are broadly aligned with those derived from morphological assessments. However, the slope of taxon rarefaction curves for many phyla remains incomplete, suggesting that the true alpha diversity is likely to exceed current perceptions. The approaches provide a rapid, objective and cost-effective taxonomic framework for exploring links between ecosystem structure and function of all hitherto intractable, but ecologically important, communities.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A genome-wide view of Caenorhabditis elegans base-substitution mutation processes

Dee R. Denver; Peter C. Dolan; Larry J. Wilhelm; Way Sung; J. Ignacio Lucas-Lledó; Dana K. Howe; Samantha C. Lewis; Kazu Okamoto; W. Kelley Thomas; Michael Lynch; Charles F. Baer

Knowledge of mutation processes is central to understanding virtually all evolutionary phenomena and the underlying nature of genetic disorders and cancers. However, the limitations of standard molecular mutation detection methods have historically precluded a genome-wide understanding of mutation rates and spectra in the nuclear genomes of multicellular organisms. We applied two high-throughput DNA sequencing technologies to identify and characterize hundreds of spontaneously arising base-substitution mutations in 10 Caenorhabditis elegans mutation-accumulation (MA)-line nuclear genomes. C. elegans mutation rate estimates were similar to previous calculations based on smaller numbers of mutations. Mutations were distributed uniformly within and among chromosomes and were not associated with recombination rate variation in the MA lines, suggesting that intragenomic variation in genetic hitchhiking and/or background selection are primarily responsible for the chromosomal distribution patterns of polymorphic nucleotides in C. elegans natural populations. A strong mutational bias from G/C to A/T nucleotides was detected in the MA lines, implicating oxidative DNA damage as a major endogenous mutagenic force in C. elegans. The observed mutational bias also suggests that the C. elegans nuclear genome cannot be at equilibrium because of mutation alone. Transversions dominate the spectrum of spontaneous mutations observed here, whereas transitions dominate patterns of allegedly neutral polymorphism in natural populations of C. elegans and many other animal species; this observation challenges the assumption that natural patterns of molecular variation in noncoding regions of the nuclear genome accurately reflect underlying mutation processes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Drift-barrier hypothesis and mutation-rate evolution.

Way Sung; Matthew S. Ackerman; Samuel F. Miller; Thomas G. Doak; Michael Lynch

Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (Ne), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large Ne appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in Ne.


Molecular Ecology Resources | 2009

Evaluating high‐throughput sequencing as a method for metagenomic analysis of nematode diversity

Dorota L. Porazinska; Robin M. Giblin-Davis; Lina Faller; William G. Farmerie; Natsumi Kanzaki; Krystalynne Morris; Thomas O. Powers; Abraham E. Tucker; Way Sung; W. Kelley Thomas

Nematodes play an important role in ecosystem processes, yet the relevance of nematode species diversity to ecology is unknown. Because nematode identification of all individuals at the species level using standard techniques is difficult and time‐consuming, nematode communities are not resolved down to the species level, leaving ecological analysis ambiguous. We assessed the suitability of massively parallel sequencing for analysis of nematode diversity from metagenomic samples. We set up four artificial metagenomic samples involving 41 diverse reference nematodes in known abundances. Two samples came from pooling polymerase chain reaction products amplified from single nematode species. Two additional metagenomic samples consisted of amplified products of DNA extracted from pooled nematode species. Amplified products involved two rapidly evolving ~400‐bp sections coding for the small and large subunit of rRNA. The total number of reads ranged from 4159 to 14771 per metagenomic sample. Of these, 82% were > 199 bp in length. Among the reads > 199 bp, 86% matched the referenced species with less than three nucleotide differences from a reference sequence. Although neither rDNA section recovered all nematode species, the use of both loci improved the detection level of nematode species from 90 to 97%. Overall, results support the suitability of massively parallel sequencing for identification of nematodes. In contrast, the frequency of reads representing individual species did not correlate with the number of individuals in the metagenomic samples, suggesting that further methodological work is necessary before it will be justified for inferring the relative abundances of species within a nematode community.


Science | 2009

Extensive, Recent Intron Gains in Daphnia Populations

Wenli Li; Abraham E. Tucker; Way Sung; W. Kelley Thomas; Michael Lynch

Inserting Introns Introns—noncoding regions that interrupt coding gene sequences—are widespread throughout eukaryotic genomes, but intron gains and losses within and among species have been assumed to be rare. However, W. Li et al. (p. 1260) suggest that intron insertions can be relatively frequent within a population or species. By examining intron polymorphisms within genomes of different accessions of Daphnia pulpex (the water flea), and comparisons within the genus Daphnia, several instances of recent intron gains were observed, which appear to have occurred multiple times at the same site. Because intron insertions tend to be flanked by repetitive sequences, they may be the result of DNA damage repair mechanisms. Interpopulation genome polymorphisms in the water flea, Daphnia, indicate multiple recent intron gains. Rates and mechanisms of intron gain and loss have traditionally been inferred from alignments of highly conserved genes sampled from phylogenetically distant taxa. We report a population-genomic approach that detected 24 discordant intron/exon boundaries between the whole-genome sequences of two Daphnia pulex isolates. Sequencing of presence/absence loci across a collection of D. pulex isolates and outgroup Daphnia species shows that most polymorphisms are a consequence of recent gains, with parallel gains often occurring at the same locations in independent allelic lineages. More than half of the recent gains are associated with short sequence repeats, suggesting an origin via repair of staggered double-strand breaks. By comparing the allele-frequency spectrum of intron-gain alleles with that for derived single-base substitutions, we also provide evidence that newly arisen introns are intrinsically deleterious and tend to accumulate in population-genetic settings where random genetic drift is a relatively strong force.


Molecular Ecology | 2012

Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments.

Holly M. Bik; Way Sung; Paul De Ley; James G. Baldwin; Jyotsna Sharma; Axayácatl Rocha-Olivares; W. Kelley Thomas

Microbial eukaryotes (nematodes, protists, fungi, etc., loosely referred to as meiofauna) are ubiquitous in marine sediments and probably play pivotal roles in maintaining ecosystem function. Although the deep-sea benthos represents one of the worlds largest habitats, we lack a firm understanding of the biodiversity and community interactions amongst meiobenthic organisms in this ecosystem. Within this vast environment, key questions concerning the historical genetic structure of species remain a mystery, yet have profound implications for our understanding of global biodiversity and how we perceive and mitigate the impact of environmental change and anthropogenic disturbance. Using a metagenetic approach, we present an assessment of microbial eukaryote communities across depth (shallow water to abyssal) and ocean basins (deep-sea Pacific and Atlantic). Within the 12 sites examined, our results suggest that some taxa can maintain eurybathic ranges and cosmopolitan deep-sea distributions, but the majority of species appear to be regionally restricted. For Operationally Clustered Taxonomic Units (OCTUs) reporting wide distributions, there appears to be a taxonomic bias towards a small subset of taxa in most phyla; such bias may be driven by specific life history traits amongst these organisms. In addition, low genetic divergence between geographically disparate deep-sea sites suggests either a shorter coalescence time between deep-sea regions or slower rates of evolution across this vast oceanic ecosystem. While high-throughput studies allow for broad assessment of genetic patterns across microbial eukaryote communities, intragenomic variation in rRNA gene copies and the patchy coverage of reference databases currently present substantial challenges for robust taxonomic interpretations of eukaryotic data sets.


Nature Reviews Genetics | 2016

Genetic drift, selection and the evolution of the mutation rate

Michael Lynch; Matthew S. Ackerman; Jean-François Gout; Hongan Long; Way Sung; W. Kelley Thomas; Patricia L. Foster

As one of the few cellular traits that can be quantified across the tree of life, DNA-replication fidelity provides an excellent platform for understanding fundamental evolutionary processes. Furthermore, because mutation is the ultimate source of all genetic variation, clarifying why mutation rates vary is crucial for understanding all areas of biology. A potentially revealing hypothesis for mutation-rate evolution is that natural selection primarily operates to improve replication fidelity, with the ultimate limits to what can be achieved set by the power of random genetic drift. This drift-barrier hypothesis is consistent with comparative measures of mutation rates, provides a simple explanation for the existence of error-prone polymerases and yields a formal counter-argument to the view that selection fine-tunes gene-specific mutation rates.

Collaboration


Dive into the Way Sung's collaboration.

Top Co-Authors

Avatar

Michael Lynch

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

W. Kelley Thomas

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Matthew S. Ackerman

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Thomas G. Doak

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Abraham E. Tucker

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Dorota L. Porazinska

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Hongan Long

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel F. Miller

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge