Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Waylan K. Bessler is active.

Publication


Featured researches published by Waylan K. Bessler.


Blood | 2009

P21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics

Jayme D. Allen; Zahara M. Jaffer; Su Jung Park; Sarah Burgin; Clemens Hofmann; Mary Ann Sells; Shi Chen; Ethel Derr-Yellin; Elizabeth G. Michels; Andrew McDaniel; Waylan K. Bessler; David A. Ingram; Simon J. Atkinson; Jeffrey B. Travers; Jonathan Chernoff; D. Wade Clapp

Mast cells are key participants in allergic diseases via activation of high-affinity IgE receptors (FcepsilonRI) resulting in release of proinflammatory mediators. The biochemical pathways linking IgE activation to calcium influx and cytoskeletal changes required for intracellular granule release are incompletely understood. We demonstrate, genetically, that Pak1 is required for this process. In a passive cutaneous anaphylaxis experiment, W(sh)/W(sh) mast cell-deficient mice locally reconstituted with Pak1(-/-) bone marrow-derived mast cells (BMMCs) experienced strikingly decreased allergen-induced vascular permeability compared with controls. Consistent with the in vivo phenotype, Pak1(-/-) BMMCs exhibited a reduction in FcepsilonRI-induced degranulation. Further, Pak1(-/-) BMMCs demonstrated diminished calcium mobilization and altered depolymerization of cortical filamentous actin (F-actin) in response to FcepsilonRI stimulation. These data implicate Pak1 as an essential molecular target for modulating acute mast cell responses that contribute to allergic diseases.


Pediatric Research | 2008

Endothelial colony forming cells and mesenchymal stem cells are enriched at different gestational ages in human umbilical cord blood.

M. Jawad Javed; Laura E. Mead; Daniel Prater; Waylan K. Bessler; David R. Foster; Jamie Case; W. Scott Goebel; Mervin C. Yoder; Laura S. Haneline; David A. Ingram

: Endothelial progenitor cells (EPCs) are used for angiogenic therapies and as biomarkers of cardiovascular disease. Human umbilical cord blood (UCB) is a rich source of endothelial colony forming cells (ECFCs), which are EPCs with robust proliferative potential that may be useful for clinical vascular regeneration. Previous studies show that hematopoietic progenitor cells are increased in premature UCB compared with term controls. Based on this paradigm, we hypothesized that premature UCB would be an enriched source of ECFCs. Thirty-nine UCB samples were obtained from premature infants (24–37 wk gestational age (GA)) and term controls. ECFC colonies were enumerated, clonally isolated, and identified by expression of endothelial cell surface antigens and functional analysis. GA of 33–36 wk UCB yielded predominantly ECFC colonies at equivalent numbers to term infants. UCB from 24 to 28 wk GA infants had significantly fewer ECFCs. Surprisingly, 24–28 wk GA UCB yielded predominantly mesenchymal stem cell (MSC) colonies, capable of differentiating into adipocytes, chondrocytes, and osteocytes. MSCs were rarely identified in 37–40 wk GA UCB. These studies demonstrate that circulating MSCs and ECFCs appear at different GA in the human UCB, and that 24–28 wk GA UCB may be a novel source of MSCs for therapeutic use in human diseases.


Blood | 2008

Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/− mast cells

Andrew S. McDaniel; Jayme D. Allen; Su Jung Park; Zahara M. Jaffer; Elizabeth G. Michels; Sarah Burgin; Shi Chen; Waylan K. Bessler; Clemens Hofmann; David A. Ingram; Jonathan Chernoff; D. Wade Clapp

Neurofibromatosis type 1 (NF1) is a common genetic disorder caused by mutations in the NF1 locus, which encodes neurofibromin, a negative regulator of Ras. Patients with NF1 develop numerous neurofibromas, which contain many inflammatory mast cells that contribute to tumor formation. Subsequent to c-Kit stimulation, signaling from Ras to Rac1/2 to the MAPK pathway appears to be responsible for multiple hyperactive mast cell phenotypes; however, the specific effectors that mediate these functions remain uncertain. p21-activated kinase 1 (Pak1) is a downstream mediator of Rac1/2 that has been implicated as a positive regulator of MAPK pathway members and is a modulator of cell growth and cytoskeletal dynamics. Using an intercross of Pak 1(-/-) mice with Nf1(+/-) mice, we determined that Pak1 regulates hyperactive Ras-dependent proliferation via a Pak1/Erk pathway, whereas a Pak1/p38 pathway is required for the increased migration in Nf1(+/-) mast cells. Furthermore, we confirmed that loss of Pak1 corrects the dermal accumulation of Nf1(+/-) mast cells in vivo to levels found in wild-type mice. Thus, Pak1 is a novel mast cell mediator that functions as a key node in the MAPK signaling network and potential therapeutic target in NF1 patients.


Human Molecular Genetics | 2008

Nf1+/− mice have increased neointima formation via hyperactivation of a Gleevec sensitive molecular pathway

Elisabeth A. Lasater; Waylan K. Bessler; Laura E. Mead; Whitney Horn; D. Wade Clapp; Simon J. Conway; David A. Ingram; Fang Li

Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the NF1 tumor suppressor gene. Neurofibromin is encoded by NF1 and functions as a negative regulator of Ras activity. Somatic mutations in the residual normal NF1 allele within cancers of NF1 patients is consistent with NF1 functioning as a tumor-suppressor. However, the prevalent non-malignant manifestations of NF1, including learning and bone disorders emphasize the importance of dissecting the cellular and biochemical effects of NF1 haploinsufficiency in multiple cell lineages. One of the least studied complications of NF1 involves cardiovascular disorders, including arterial occlusions that result in cerebral and visceral infarcts. NF1 vasculopathy is characterized by vascular smooth muscle cell (VSMC) accumulation in the intima area of vessels resulting in lumen occlusion. We recently showed that Nf1 haploinsufficiency increases VSMC proliferation and migration via hyperactivation of the Ras-Erk pathway, which is a signaling axis directly linked to neointima formation in diverse animal models of vasculopathy. Given this observation, we tested whether heterozygosity of Nf1 would lead to vaso-occlusive disease in genetically engineered mice in vivo. Strikingly, Nf1+/- mice have increased neointima formation, excessive vessel wall cell proliferation and Erk activation after vascular injury in vivo. Further, this effect is directly dependent on a Gleevec sensitive molecular pathway. Therefore, these studies establish an Nf1 model of vasculopathy, which mirrors features of human NF1 vaso-occlusive disease, identifies a potential therapeutic target and provides a platform to further dissect the effect of Nf1 haploinsufficiency in cardiovascular disease.


Journal of Clinical Investigation | 2010

Genetic and cellular evidence of vascular inflammation in neurofibromin-deficient mice and humans.

Elisabeth A. Lasater; Fang Li; Waylan K. Bessler; Myka L. Estes; Sasidhar Vemula; Cynthia M. Hingtgen; Mary C. Dinauer; Reuben Kapur; Simon J. Conway; David A. Ingram

Neurofibromatosis type 1 (NF1) results from mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin. NF1 patients display diverse clinical manifestations, including vascular disease, which results from neointima formation and vessel occlusion. However, the pathogenesis of NF1 vascular disease remains unclear. Vessel wall homeostasis is maintained by complex interactions between vascular and bone marrow-derived cells (BMDCs), and neurofibromin regulates the function of each cell type. Therefore, utilizing cre/lox techniques and hematopoietic stem cell transplantation to delete 1 allele of Nf1 in endothelial cells, vascular smooth muscle cells, and BMDCs alone, we determined which cell lineage is critical for neointima formation in vivo in mice. Here we demonstrate that heterozygous inactivation of Nf1 in BMDCs alone was necessary and sufficient for neointima formation after vascular injury and provide evidence of vascular inflammation in Nf1+/- mice. Further, analysis of peripheral blood from NF1 patients without overt vascular disease revealed increased concentrations of inflammatory cells and cytokines previously linked to vascular inflammation and vasoocclusive disease. These data provide genetic and cellular evidence of vascular inflammation in NF1 patients and Nf1+/- mice and provide a framework for understanding the pathogenesis of NF1 vasculopathy and potential therapeutic and diagnostic interventions.


Journal of Immunology | 2007

K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/- mast cells

Waleed Khalaf; Feng Chun Yang; Shi Chen; Hilary White; Waylan K. Bessler; David A. Ingram; D. Wade Clapp

p21ras (Ras) proteins and GTPase-activating proteins (GAPs) tightly modulate extracellular growth factor signals and control multiple cellular functions. The specific function of each Ras isoform (H, N, and K) in regulating distinct effector pathways, and the role of each GAP in negatively modulating the activity of each Ras isoform in myeloid cells and, particularly, mast cells is incompletely understood. In this study, we use murine models of K-ras- and Nf1-deficient mice to examine the role of K-ras in modulating mast cell functions and to identify the role of neurofibromin as a GAP for K-ras in this lineage. We find that K-ras is required for c-kit-mediated mast cell proliferation, survival, migration, and degranulation in vitro and in vivo. Furthermore, the hyperactivation of these cellular functions in Nf1+/− mast cells is decreased in a K-ras gene dose-dependent fashion in cells containing mutations in both loci. These findings identify K-ras as a key effector in multiple mast cell functions and identify neurofibromin as a GAP for K-ras in mast cells.


Circulation | 2014

Neurofibromin-deficient myeloid cells are critical mediators of aneurysm formation in vivo

Fang Li; Brandon D. Downing; Lucy C. Smiley; Julie A. Mund; Matthew R. DiStasi; Waylan K. Bessler; Kara N. Sarchet; Daniel M. Hinds; Lisa M. Kamendulis; Cynthia M. Hingtgen; Jamie Case; D. Wade Clapp; Simon J. Conway; Brian K. Stansfield; David A. Ingram

Background— Neurofibromatosis type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in the development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. Method and Results— With the use of an angiotensin II–induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1+/–) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show that loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1+/– aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin reduced aneurysm formation in Nf1+/– mice. Conclusion— These data provide genetic and pharmacological evidence that Nf1+/– myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target.


Human Molecular Genetics | 2013

Heterozygous Inactivation of the Nf1 Gene in Myeloid Cells Enhances Neointima Formation via a Rosuvastatin-Sensitive Cellular Pathway

Brian K. Stansfield; Waylan K. Bessler; Raghuveer Singh Mali; Julie A. Mund; Brandon D. Downing; Fang Li; Kara N. Sarchet; Matthew R. DiStasi; Simon J. Conway; Reuben Kapur; David A. Ingram

Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1(+/-) neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1(+/-) mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1(+/-) mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1(+/-) neointima formation and propose a potential therapeutic for NF1 cardiovascular disease.


Human Molecular Genetics | 2016

Nf1+/− monocytes/macrophages induce neointima formation via CCR2 activation

Waylan K. Bessler; Grace Kim; Farlyn Z. Hudson; Julie A. Mund; Raghuveer Singh Mali; Keshav Menon; Reuben Kapur; D. Wade Clapp; David A. Ingram; Brian K. Stansfield

Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.


Free Radical Biology and Medicine | 2016

Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans

Waylan K. Bessler; Farlyn Z. Hudson; Hanfang Zhang; Valerie Harris; Yusi Wang; Julie A. Mund; Brandon D. Downing; David A. Ingram; Jamie Case; David Fulton; Brian K. Stansfield

Neurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions.

Collaboration


Dive into the Waylan K. Bessler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge