Waylon Weber
Lovelace Respiratory Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Waylon Weber.
International Immunopharmacology | 2012
Neerad C. Mishra; Gary R. Grotendorst; Raymond J. Langley; Shashi P. Singh; Sravanthi Gundavarapu; Waylon Weber; Juan Carlos Peña-Philippides; Matthew R. Duncan; Mohan L. Sopori
Sulfur mustard (SM) is a highly toxic chemical warfare agent that remains a threat to human health. The immediate symptoms of pulmonary distress may develop into chronic lung injury characterized by progressive lung fibrosis, the major cause of morbidity among the surviving SM victims. Although SM has been intensely investigated, little is known about the mechanism(s) by which SM induces chronic lung pathology. Increasing evidence suggests that IL-17(+) cells are critical in fibrosis, including lung fibrotic diseases. In this study we exposed F344 rats and cynomolgus monkeys to SM via inhalation and determined the molecular and cellular milieu in their lungs at various times after SM exposure. In rats, SM induced a burst of pro-inflammatory cytokines/chemokines within 72 h, including IL-1β, TNF-α, IL-2, IL-6, CCL2, CCL3, CCL11, and CXCL1 that was associated with neutrophilic infiltration into the lung. At 2 wks and beyond (chronic phase), lymphocytic infiltration and continued elevated expression of cytokines/chemokines were sustained. TGF-β, which was undetectable in the acute phase, was strongly upregulated in the chronic phase; these conditions persisted until the animals were sacrificed. The chronic phase was also associated with myofibroblast proliferation, collagen deposition, and presence of IL-17(+) cells. At ≥30 days, SM inhalation promoted the accumulation of IL-17(+) cells in the inflamed areas of monkey lungs. Thus, SM inhalation causes acute and chronic inflammatory responses; the latter is characterized by the presence of TGF-β, fibrosis, and IL-17(+) cells in the lung. IL-17(+) cells likely play an important role in the pathogenesis of SM-induced lung injury.
Journal of Proteome Research | 2015
Maryam Goudarzi; Waylon Weber; Tytus D. Mak; Juijung Chung; Melanie Doyle-Eisele; Dunstana R. Melo; David J. Brenner; Raymond A. Guilmette; Albert J. Fornace
In this study ultra performance liquid chromatography (UPLC) coupled to time-of-flight mass spectrometry in the MSE mode was used for rapid and comprehensive analysis of metabolites in the serum of mice exposed to internal exposure by Cesium-137 (137Cs). The effects of exposure to 137Cs were studied at several time points after injection of 137CsCl in mice. Over 1800 spectral features were detected in the serum of mice in positive and negative electrospray ionization modes combined. Detailed statistical analysis revealed that several metabolites associated with amino acid metabolism, fatty acid metabolism, and the TCA cycle were significantly perturbed in the serum of 137Cs-exposed mice compared with that of control mice. While metabolites associated with the TCA cycle and glycolysis increased in their serum abundances, fatty acids such as linoleic acid and palmitic acid were detected at lower levels in serum after 137Cs exposure. Furthermore, phosphatidylcholines (PCs) were among the most perturbed ions in the serum of 137Cs-exposed mice. This is the first study on the effects of exposure by an internal emitter in serum using a UPLC–MSE approach. The results have put forth a panel of metabolites, which may serve as potential serum markers to 137Cs exposure.
Radiation Research | 2014
Maryam Goudarzi; Waylon Weber; Tytus D. Mak; Juijung Chung; Melanie Doyle-Eisele; Dunstana R. Melo; David J. Brenner; Raymond A. Guilmette; Albert J. Fornace
Cesium-137 is a fission product of uranium and plutonium in nuclear reactors and is released in large quantities during nuclear explosions or detonation of an improvised device containing this isotope. This environmentally persistent radionuclide undergoes radioactive decay with the emission of beta particles as well as gamma radiation. Exposure to 137Cs at high doses can cause acute radiation sickness and increase risk for cancer and death. The serious health risks associated with 137Cs exposure makes it critical to understand how it affects human metabolism and whether minimally invasive and easily accessible samples such as urine and serum can be used to triage patients in case of a nuclear disaster or a radiologic event. In this study, we have focused on establishing a time-dependent metabolomic profile for urine collected from mice injected with 137CsCl. The samples were collected from control and exposed mice on days 2, 5, 20 and 30 after injection. The samples were then analyzed by ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC/TOFMS) and processed by an array of informatics and statistical tools. A total of 1,412 features were identified in ESI+ and ESI– modes from which 200 were determined to contribute significantly to the separation of metabolomic profiles of controls from those of the different treatment time points. The results of this study highlight the ease of use of the UPLC/TOFMS platform in finding urinary biomarkers for 137Cs exposure. Pathway analysis of the statistically significant metabolites suggests perturbations in several amino acid and fatty acid metabolism pathways. The results also indicate that 137Cs exposure causes: similar changes in the urinary excretion levels of taurine and citrate as seen with external-beam gamma radiation; causes no attenuation in the levels of hexanoylglycine and N-acetylspermidine; and has unique effects on the levels of isovalerylglycine and tiglylglycine.
Toxicology Mechanisms and Methods | 2010
Waylon Weber; Dean Kracko; Mericka R. Lehman; Clinton M. Irvin; Lee F. Blair; Richard K. White; Janet M. Benson; Gary R. Grotendorst; Yung Sung Cheng; Jacob D. McDonald
Sulfur mustard (SM) is a chemical threat agent for which its effects have no current treatment. Due to the ease of synthesis and dispersal of this material, the need to develop therapeutics is evident. The present manuscript details the techniques used to develop SM laboratory exposure systems for the development of animal models of pulmonary injury. These models are critical for evaluating SM injury and developing therapeutics against that injury. Iterative trials were conducted to optimize a lung injury model. The resulting pathology was used as a guide, with a goal of effecting homogeneous and diffuse lung injury comparable to that of human injury. Inhalation exposures were conducted by either nose-only inhalation or intubated inhalation. The exposures were conducted to either directly vaporized SM or SM that was nebulized from an ethanol solution. Inhalation of SM by nose-only inhalation resulted in severe nasal epithelial degeneration and minimal lung injury. The reactivity of SM did not permit it to transit past the upper airways to promote lower airway injury. Intratracheal inhalation of SM vapors at a concentration of 5400 mg · min/m3 resulted in homogeneous lung injury with no nasal degeneration.
Wound Repair and Regeneration | 2011
Janet M. Benson; JeanClare Seagrave; Waylon Weber; Colleen D. Santistevan; Gary R. Grotendorst; Gregory S. Schultz; Thomas H. March
The objective of these studies was to provide detailed analyses of the time course of sulfur mustard (SM) vapor‐induced clinical, histological, and biochemical changes following cutaneous exposure in hairless guinea‐pigs. Three 6 cm2 sites on the backs of each guinea‐pig were exposed to SM vapor (314 mg3) for 6 minutes (low dose) or 12 minutes (high dose). Animals were killed at 6, 24, and 48 hours, or 2 weeks postexposure. Erythema, edema, histopathology, and analysis of matrix metalloproteinase (MMP)‐2 and ‐9 content were evaluated. Erythema was observed by 6 hours, and edema by 24 hours postexposure. Vapor exposure caused epidermal necrosis with varying degrees of dermatitis, ulceration, hemorrhage, and separation of the dermis from the epidermis. Later changes included epidermal regeneration with hyperplasia and formation of granulation tissue in the dermis with loss of hair follicles and glandular structures. Relative amounts of pro and active MMP‐2 and MMP‐9 were significantly increased in the high‐dose SM group at 2 weeks. Erythema, edema, and histologic changes are consistent with findings among human victims of SM attack. This model, with observations to 2 weeks, will be useful in assessing the efficacy of countermeasures against SM.
Radiation Research | 2014
Sunirmal Paul; Shanaz A. Ghandhi; Waylon Weber; Melanie Doyle-Eisele; Dunstana R. Melo; Raymond A. Guilmette; Sally A. Amundson
Cesium-137 is a radionuclide of concern in fallout from reactor accidents or nuclear detonations. When ingested or inhaled, it can expose the entire body for an extended period of time, potentially contributing to serious health consequences ranging from acute radiation syndrome to increased cancer risks. To identify changes in gene expression that may be informative for detecting such exposure, and to begin examining the molecular responses involved, we have profiled global gene expression in blood of male C57BL/6 mice injected with 137CsCl. We extracted RNA from the blood of control or 137CsCl-injected mice at 2, 3, 5, 20 or 30 days after exposure. Gene expression was measured using Agilent Whole Mouse Genome Microarrays, and the data was analyzed using BRB-ArrayTools. Between 466–6,213 genes were differentially expressed, depending on the time after 137Cs administration. At early times (2–3 days), the majority of responsive genes were expressed above control levels, while at later times (20–30 days) most responding genes were expressed below control levels. Numerous genes were overexpressed by day 2 or 3, and then underexpressed by day 20 or 30, including many Tp53-regulated genes. The same pattern was seen among significantly enriched gene ontology categories, including those related to nucleotide binding, protein localization and modification, actin and the cytoskeleton, and in the integrin signaling canonical pathway. We compared the expression of several genes three days after 137CsCl injection and three days after an acute external gamma-ray exposure, and found that the internal exposure appeared to produce a more sustained response. Many common radiation-responsive genes are altered by internally administered 137Cs, but the gene expression pattern resulting from continued irradiation at a decreasing dose rate is extremely complex, and appears to involve a late reversal of much of the initial response.
Inhalation Toxicology | 2010
JeanClare Seagrave; Waylon Weber; Gary R. Grotendorst
Context: sulfur mustard (SM) causes skin blistering and long-term pulmonary dysfunction. Its adverse effects have been studied in battlefield-exposed humans, but lack of knowledge regarding confounding factors makes interpretation challenging. Animal studies are critical to understanding mechanisms, but differences between animals and humans must be addressed. Studies of cultured human cells can bridge animal studies and humans. Objective: Evaluate effects of SM vapor on airway cells. Materials and methods: We examined responses of differentiated human tracheal/bronchial epithelial cells, cultured at an air-liquid interface, to SM vapors. SM effects on metabolic activity (Water Soluble Tetrazolium (WST) assay), cytokine and metalloproteinase secretion, and cellular heme oxygenase 1 (HO-1), an oxidative stress indicator, were measured after 24 h. Results: At noncytotoxic levels of exposure, interleukin 8 and matrix metalloproteinase-13 were significantly increased in these cultures, but HO-1 was not significantly affected. Discussion and conclusion: Exposure of differentiated airway epithelial cells to sub-cytotoxic levels of SM vapor induced inflammatory and degradative responses that could contribute to the adverse health effects of inhaled SM.
Journal of Toxicology and Environmental Health | 2007
Jacob D. McDonald; Waylon Weber; Rena Marr; Dean Kracko; Hnin Khain; Richard Arimoto
Tungsten (W) has been nominated for study to the National Toxicology Program (NTP) because of reported associations between concentrations of W in drinking water and childhood leukemia. The disposition of W (administered as sodium tungstate dihydrate in water) in plasma, liver, kidneys, uterus, femur, and intestine of rodents (Sprague-Dawley rats and C57BL/6N mice) was characterized after exposures by oral gavage (1, 10, or 100 mg/kg) or intravenous (1 mg/kg) administration. Each tissue (or plasma) was collected and analyzed by inductively coupled plasma mass spectrometry at 1, 2, 4, or 24 h after dose administration. W was observed in plasma and all tissues after both gavage and iv administration. In rats, concentrations in plasma and most tissues peaked at 4 h. In mice, concentrations in plasma and most tissues peaked at 1 h. Although the amount of W in each matrix decreased significantly by 24 h, there was W remaining in several tissues, especially at the higher doses.
Radiation Research | 2015
Maryam Goudarzi; Waylon Weber; Tytus D. Mak; Juijung Chung; Melanie Doyle-Eisele; Dunstana R. Melo; Steven J. Strawn; David J. Brenner; Raymond A. Guilmette; Albert J. Fornace
Internal emitters such as Strontium-90 (90Sr) pose a substantial health risk during and immediately after a nuclear disaster or detonation of an improvised device. The environmental persistency and potency of 90Sr calls for urgent development of high-throughput tests to establish levels of exposure and to help triage potentially exposed individuals who were in the immediate area of the disaster. In response to these concerns, our team focused on developing a robust metabolomic profile for 90Sr exposure in urine using a mouse model. The sensitivity of modern time-of-flight mass spectrometry (TOFMS) combined with the separation power of ultra performance liquid chromatography (UPLC) was used to determine perturbations in the urinary metabolome of mice exposed to 90Sr. The recently developed statistical suite, MetaboLyzer, was used to explore the mass spectrometry data. The results indicated a significant change in the urinary abundances of metabolites pertaining to butanoate metabolism, vitamin B metabolism, glutamate and fatty acid oxidation. All of these pathways are either directly or indirectly connected to the central energy production pathway, the tricarboxylic acid (TCA) cycle. To our knowledge, this is the first in vivo metabolomics to evaluate the effects of exposure to 90Sr using the easily accessible biofluid, urine.
Journal of Toxicology and Environmental Health | 2011
Janet M. Benson; Brad M. Tibbetts; Waylon Weber; Gary R. Grotendorst
Sulfur mustard (SM), a vessicating agent, has been used in chemical warfare since 1918. The purpose of this study was to quantitate SM vapor deposition, tissue distribution, and excretion following intratracheal inhalation in rats and cutaneous exposure in guinea pigs. 14C-SM vapors for inhalation studies were generated by metering liquid 14C-SM into a heated J tube. Vapors were transported via carrier air supplemented with oxygen and isoflurane to an exposure plenum. Anesthetized rats with transorally placed tracheal catheters were connected to the plenum port via the catheter hub for exposure (approximately 250 mg 14C-SM vapor/m3; 10 min). For dermal exposure, 3 Teflon cups (6.6 cm2 exposure area per cup) were applied to the backs of each animal and vapors (525 mg 14C-SM/m3; 12 min) were generated by applying 6 μl 14C-SM to filter paper within each cup. Animals were euthanized at selected times up to 7 d postexposure. SM equivalents deposited in rats and guinea pigs were 18.1 ± 3 μg and 29.8 ± 5.31 μg, respectively. Inhaled SM equivalents rapidly distributed throughout the body within 2 h postexposure, with the majority (>70%) of material at that time located in carcass and pelt. In guinea pigs, >90% of deposited SM equivalents remained in skin, with minor distribution to blood and kidneys. Urine was the primary route of excretion for both species. Results indicate inhaled SM is rapidly absorbed from the lung and distributed throughout the body while there is limited systemic distribution following cutaneous exposure.