Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne C. Leininger is active.

Publication


Featured researches published by Wayne C. Leininger.


Journal of Range Management | 2000

Stubble height as a tool for management of riparian areas.

Warren P. Clary; Wayne C. Leininger

Stubble height, a measure of the herbaceous vegetation remaining after grazing, has been widely used in recent years to gage the impacts of grazing use in riparian areas. Stubble height is a short-term management guide that should only be applied to help attain long-term ecological objectives; it should not be thought of as a long-term management objective. Maintaining a minimum stubble height helps preserve forage plant vigor, retain sufficient forage to reduce cattle browsing of willows (Salix spp.), stabilize sediments, indirectly limit streambank trampling, maintain cattle gains, and provide an easily communicated management criterion. Based on limited specific research of riparian system response and on knowledge of the characteristics of how cattle graze, a 10-cm residual stubble height is recommended by the authors as a starting point for improved riparian grazing management. Monitoring should then be conducted to determine if an adjustment is needed. In some situations, 7 cm or even less stubble height may provide for adequate riparian ecosystem function, particularly when streambanks are dry and stable or possibly at high elevations where vegetation is naturally of low stature. In other situations, 15-20 cm of stubble height may be required to reduce browsing of willows or limit trampling impact to vulnerable streambanks. The recommended criterion would apply to streamside and nearby meadow sites with hydrophilic or potentially hydrophilic vegetation, but not directly to dry meadows or even to all wet meadows. Stubble height may have little application where the streambanks are stabilized by coarse substrates, or the channels are deeply incised. The effects of residual stubble height in riparian functions have received limited direct experimental examination. Consequently, much of the information in this review was derived from studies indirectly related to the questions raised and, to some extent, from observations of experienced professionals. The authors have identified areas of scientific investigation needed to improve our understanding of the effects of stubble height on riparian function and grazing management.


Journal of Range Management | 1998

Sediment movement through riparian vegetation under simulated rainfall and overland flow.

Robert A. Pearce; M. J. Trlica; Wayne C. Leininger; Daryl E. Mergen; Gary Frasier

A 2-year rainfall simulation study was conducted to evaluate the effectiveness of riparian vegetation to reduce sediment movement. Three vegetation height treatments [clipped to the soil surface, 10 cm height, and undisturbed (unclipped)] were evaluated in 2 montane riparian vegetation communities in northern Colorado. One community was a tufted hairgrass (Deschampsia caespitosa (L.) Beauv.), cinquefoil (Potentilla gracilis Dougl. ex Hook), Kentucky bluegrass (Poa pratensis L.), and sedge (Carex spp.) association. The other community was dominated by beaked sedge (Carex rostrata Stokes) and water sedge (Carex aquatilis Wahl.). Water was sprayed on plots (3 m X 10 cm) at a rate of 60 mm hour-1 with a rainfall simulator, while overland flow containing sediment was introduced at the upper end of the plots at a rate of 25 mm hour-1. Two sediment sources were evaluated. In the first years studies the sediment was derived from an upland soil. The second year a fine silica sediment was used. Thirty kg of sediment was added to each plot. The first of 2 experiments was concerned with movement of sand particles greater than 200 micrometers. The second experiment was designed to evaluate the quantity of 5 particle size classes (2-10, 10-30, 30-50, 50-100, and 100-200 micrometers) contained in sediment traps at 60, 120, and 180 cm downslope from the upslope border of the simulator plots. Results of the first experiment showed a significant increase in sand movement downslope when vegetation was clipped to the soil surface compared with undisturbed vegetation. In the second experiment, most significant differences in movement for finer particles occurred in the 2-10 micrometers and 10-30 micrometers particle ranges. A smaller percentage of particles in the 2-10 micrometers range was present in sediment traps at all 3 distances downslope when vegetation was clipped to the soil surface, as these smaller particles stayed in suspension. Increased vegetation height resulted in a significantly smaller percentage of the 10-30 micrometers particle size range present at 120 cm distance. This study showed that additional variables (% surface vegetation cover, aboveground biomass, % shrubs, surface roughness coefficient, soil texture of introduced sediment, % bare ground, distance downslope, vegetation density, grass spp., and sedge spp.), besides vegetation height, influenced sediment movement. Land managers should understand that when they manage ecosystems for a single factor, such as vegetation height, they cannot address complex issues such as sediment particle detachment, movement and filtration.


Journal of Range Management | 1998

Sediment filtration in a montane riparian zone under simulated rainfall

Robert A. Pearce; Gary Frasier; M. J. Trlica; Wayne C. Leininger; John D. Stednick; James L. Smith

A 2 year study was conducted to evaluate the effectiveness of riparian vegetation to filter sediment from overland water flow. Three vegetation height treatments: clipped to the soil surface, clipped to a 10 cm height, and undisturbed were evaluated in 2 montane riparian vegetation communities (grass and sedge) in northern Colorado. Water was sprayed on 2 macro-plots (3 m X 10 m) and 2 micro-plots (0.6 m X 2 m) simultaneously at a rate of 60 mm hr-1 with a rotating boom rainfall simulator. Overland flow containing sediment was introduced at the upper end of the plots at a rate of 25 mm hr-1 to simulate runoff and sediment transport from an upland area. Two sediment sources were used, a sandy loam soil and a ground silica sediment (loam). Thirty kg of sediment were added to each macro-plot and 1.2 kg of sediment were introduced to each micro-plot (10 Mg ha-1). Sediment yields, at the downslope end of the plot, were greater when the finer silica sediment was introduced into overland flow as compared with sediment derived from the sandy loam soil. As expected the small micro-plots yielded more sediment and were often more sensitive to community and treatment differences than larger plots. We believe this resulted from the shorter travel distance. However, sediment filtration treatment effects were usually similar for both plot sizes. Sediment yields, measured at the outlet of the plots, did not decrease, or increase, as vegetation heights increased. Accurate prediction of sediment filtration from shallow flow in riparian zones required consideration of a combination of vegetation and soil surface characteristics.


International Journal of Phytoremediation | 2007

Manganese and Zinc Toxicity Thresholds for Mountain and Geyer Willow

Jennifer O. Shanahan; Joe E. Brummer; Wayne C. Leininger; Mark W. Paschke

Information on the heavy metal toxicity thresholds of woody species endemic to the western United States is lacking but critical for successful restoration of contaminated riparian areas. Manganese (Mn, 50–10,000 mg l−1) and zinc (Zn, 100–1000 mg l−1) toxicity thresholds were determined for Geyer (Salix geyeriana Anderss.) and mountain (S. monticola Bebb) willow using a sand-culture technique. The lethal concentration (50%) values were 3117 and 2791 mg Mn l−1 and 556 and 623 mg Zn l−1 for Geyer and mountain willow, respectively. The effective concentration (50%) values for shoots were 2263 and 1027 mg Mn l−1 and 436 and 356 mg Zn l−1 for Geyer and mountain willow, respectively. Shoot tissue values did not increase with increasing treatment concentrations. However, metals in the roots did increase consistently in response to the treatments. Metal levels in the shoot tissues were low for Zn (65–139 mg kg−1) and moderate for Mn (1300–2700 mg kg−1). Geyer and mountain willow have good resistance to Mn, possibly due to evolution in hydric soils with increased Mn availability, and may be useful for phytostabilization of soils with high levels of available Mn. Both species were affected to a greater degree by Zn as compared to Mn, but still exhibited good resistance and should be useful in remediating sites with at least moderate levels of available Zn. Based on the thresholds evaluated, Geyer willow had greater resistance to both Mn and Zn as compared to mountain willow, especially at lower concentrations in which growth of Geyer willow was actually stimulated.


Journal of Range Management | 1998

Runoff from simulated rainfall in 2 montane riparian communities.

Gary W. Frasier; M. J. Trlica; Wayne C. Leininger; Robert A. Pearce; Alexander G. Fernald

Riparian ecosystems are the final terrestrial zone before runoff water enters a stream. They provide the last opportunity to decrease non-point source pollution delivery to streams by removing sediments from overland water flow from uplands and roads. To quantify processes of sediment transport, filtration and deposition, it is necessary to determine runoff characteristics for the area. A rotating boom rainfall simulator was used to evaluate the effects of 3 vegetation height treatments (control, 10-cm stubble height, and clipped to the soil surface) in 2 montane riparian plant communities (grass and sedge) on runoff characteristics. Each rainfall simulation event consisted of 2 phases, a dry run of about 60 min followed by a wet run approximately 30 min later. There were no differences in time to runoff initiation for either dry or wet runs that could be attributed to vegetation height treatments for either plant community. It usually required more time for runoff to be initiated in the sedge community compared to the grass community. Generally, there were lower equilibrium runoff percentages from dry runs in the sedge community compared with the grass community. These differences were less during wet runs. Several runoff parameters had characteristics of runoff from water repellent soils. The organic layer on the soil surface exhibited signs of water repellency that reduced the water infiltration rate during the initial stages of a rainfall simulation. These results indicate that runoff and infiltration processes in the surface organic horizon of riparian zones may not respond in the classical manner. This characteristic has important implications if criteria developed in areas with less organic matter on the soil surface are used to manage overland flow in the zone. Additional studies are needed to fully describe infiltration and runoff processes in riparian plant communities.


Rangeland Ecology & Management | 2005

Grazing History Affects Willow Communities in a Montane Riparian Ecosystem

Kathryn A. Holland; Wayne C. Leininger; M. J. Trlica

Abstract This study was conducted to compare data from 12 grazed and ungrazed areas and to examine the impacts of grazing treatments on a montane willow community during an 11-year period. Data were collected on willow canopy cover, species diversity, height, and stem density in a montane riparian ecosystem between 1988 and 1999 from 4 grazing treatments: long-term grazing (since the early 1900s), long-term grazing exclusion (exclosures built in the 1950s), recent grazing (sections of exclosures opened in 1988), and recent grazing exclusion (exclosures built in 1988). Willow canopy cover increased significantly for all treatments through time, with the recent grazing exclusion treatment becoming similar to that of the long-term exclusion treatment within 5 years. Species diversity was greatest in the long-term grazed treatment. Willow height averaged over treatments increased from 1988 to 1997 (P = 0.0001), but did not increase significantly after that. Height in the long-term exclosure averaged over time from 1988 to 1997 was 1.5 times greater than in the long-term grazing treatment. Stem density of willows was significantly greater in the recent exclosure than in the long-term exclosure (P = 0.008, 180%) and recent grazing treatments (P = 0.02, 120%). Recent grazing exclusion resulted in the greatest increase in canopy cover, height growth, and stem density during the 11 years of study, indicating that these variables respond positively to removal of livestock grazing. Results suggest that continued long-term grazing exclusion may lead to a closed canopy, lower willow species diversity, reduction in new stem height growth, and reduced stem recruitment. Information on the dynamics of willow growth under different grazing treatments should help resource managers determine appropriate livestock utilization levels in similar riparian areas, and develop management plans for these important ecosystems.


Journal of Environmental Quality | 2009

Establishment and Growth of Two Willow Species in a Riparian Zone Impacted by Mine Tailings

Melody M. Bourret; Joe E. Brummer; Wayne C. Leininger

A field study was initiated to determine survival, growth characteristics, and metal uptake of two montane riparian willow species, Geyer (Salix geyeriana Andersson) and mountain (S. monticola Bebb) willow, grown in amended fluvial mine tailing deposits. Revegetation was done with staked and previously rooted cuttings to determine if planting method had an effect on successful establishment of willows. A second planting was done the following growing season which tested cuttings of different ages. The addition of lime increased the soil pH from 5.0 to 6.5 and effectively reduced bioavailability of most heavy metals below phytotoxic levels. However, both willow species, regardless of planting method, concentrated Cd, Mn, Pb, and Zn in their leaf tissue above levels considered toxic to agronomic plants. Over the course of four growing seasons, prerooted mountain willows had a consistently higher survival rate compared to staked willows. At the end of the fourth growing season, mountain willow had a higher survival rate and produced greater aboveground growth for both planting methods, irrespective of year planted, compared with Geyer willow. Based on growth characteristics, the use of prerooted mountain willows would be recommended for successful revegetation of amended fluvial mine tailing deposits in riparian zones. However, because of the high Cd uptake into aboveground tissues, care should be taken in restoration efforts where wildlife and domestic livestock are likely to browse on the willows.


Journal of Range Management | 1999

Cattle use affects forage quality in a montane riparian ecosystem.

Rebecca L. Phillips; M. J. Trlica; Wayne C. Leininger; Warren P. Clary

Forage nitrogen (N) and phosphorous (P) concentrations and in-vitro dry-matter digestibility (IVDMD) were measured in 2 important riparian species the year following short-term, high-intensity cattle grazing treatments in a montane riparian ecosystem in northcentral Colorado. Current years growth of water sedge (Carex aquatilus Wahlenb.) and planeleaf willow (Salix planifolia Pursh.) was collected monthly from May to September 1996. The effects of grazing and season of grazing in 1995 on forage quality the following growing season was determined. Season of grazing (i.e., late-spring, early-summer, late-summer, and fall) the previous year did not differentially affect forage quality in either species. However, grazing by cattle the previous year did increase forage quality of water sedge as compared with plants that were not previously grazed. Grazed water sedge plants had higher concentrations of N and P and greater IVDMD than ungrazed controls. Nitrogen and P concentrations of browsed planeleaf willow were not different from controls, but current years growth collected in the fall from previously browsed plants was 11% more digestible than current years growth from non-browsed willow. The 2 species responded uniquely to cattle use, which suggested that these 2 life forms differ in response to herbivory. This study supported the hypothesis that grazing by cattle would improve forage quality in a riparian ecosystem, although results varied with life form.


Journal of Range Management | 2004

Steer diets in a montane riparian community

Andrew J. Pelster; Steven G. Evans; Wayne C. Leininger; M. J. Trlica; Warren P. Clary

Abstract Diets of fistulated steers that grazed a montane riparian community were determined throughout a growing season. The objective was to determine if willow (Salix spp.) consumption by steers was related to the season of use and the residual stubble heights of herbaceous forage species. Diet samples were collected at 4 levels of herbaceous utilization throughout 4 grazing periods that were based on willow phenology. Results suggested that spring grazing of riparian pastures was preferable to late-season use to minimize browsing on willows. Willow consumption increased substantially as herbaceous stubble height approached 10 and 18 cm during the spring and early-summer grazing periods, repectively. Stubble heights greater than 20 cm were needed to reduce willow consumption when they were most preferred during the late-summer and fall grazing seasons in this tall sedge (Carex spp.)/willow riparian community. Sedge and rush (Juncus spp.) composition in steer diets declined, while willow composition increased in steer diets, in response to decreasing stubble heights. Grass consumption by steers was little affected by stubble height, while forb consumption was directly related to forb availability. Although grazing activity has the potential to negatively impact riparian willows, these results suggested that timing of use and carefully controlled levels of herbaceous utilization could be used to minimize the consumption of willows by cattle in a montane riparian community.


Journal of Range Management | 2004

Seasonal diet selection of cattle grazing a montane riparian community

Steven G. Evans; Andrew J. Pelster; Wayne C. Leininger; M. J. Trlica

Abstract Cattle-grazing in riparian areas has become increasingly controversial. More information is needed about cattle use of these areas to develop Best Management Practices. This study was designed to determine seasonal changes in diet selection of cattle in a montane riparian community in northern Colorado. Previous cattle diet studies in riparian zones have not separated the interaction between seasonal preference and biomass utilization. The experiment was conducted within large exclosures that had not been grazed by livestock since 1956. Vegetation biomass estimates and diet samples from 5 esophageally fistulated steers were taken during 4 grazing periods (spring, early-summer, late- summer, and fall) in 1995. Vegetation measurements and diet samples were also collected during the late summer and fall of 1994. One of the 3 paddocks in each grazing period of 1995 had been grazed in 1994. Steer diets in 1995 were found to contain 15% more Carex spp. from paddocks that had been ungrazed until 1995 as...

Collaboration


Dive into the Wayne C. Leininger's collaboration.

Top Co-Authors

Avatar

M. J. Trlica

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Joe E. Brummer

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Gary Frasier

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bourret Mm

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Donald A. Klein

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Gary W. Frasier

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Heil Dm

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge