Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne Chadwick is active.

Publication


Featured researches published by Wayne Chadwick.


Diabetes | 2009

Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington's disease.

Bronwen Martin; Erin Golden; Olga D. Carlson; Paul J. Pistell; Jie Zhou; Wook Kim; Brittany P. Frank; Sam Thomas; Wayne Chadwick; Gillian P. Bates; Kirupa Sathasivam; Michel Bernier; Stuart Maudsley; Mark P. Mattson; Josephine M. Egan

OBJECTIVE—The aim of this study was to find an effective treatment for the genetic form of diabetes that is present in some Huntingtons disease patients and in Huntingtons disease mouse models. Huntingtons disease is a neurodegenerative disorder caused by a polyglutamine expansion within the huntingtin protein. Huntingtons disease patients exhibit neuronal dysfunction/degeneration, chorea, and progressive weight loss. Additionally, they suffer from abnormalities in energy metabolism affecting both the brain and periphery. Similarly to Huntingtons disease patients, mice expressing the mutated human huntingtin protein also exhibit neurodegenerative changes, motor dysfunction, perturbed energy metabolism, and elevated blood glucose levels. RESEARCH DESIGN AND METHODS—Huntingtons disease mice were treated with an FDA-approved antidiabetic glucagon-like peptide 1 receptor agonist, exendin-4 (Ex-4), to test whether euglycemia could be achieved, whether pancreatic dysfunction could be alleviated, and whether the mice showed any neurological benefit. Blood glucose and insulin levels and various appetite hormone concentrations were measured during the study. Additionally, motor performance and life span were quantified and mutant huntingtin (mhtt) aggregates were measured in both the pancreas and brain. RESULTS—Ex-4 treatment ameliorated abnormalities in peripheral glucose regulation and suppressed cellular pathology in both brain and pancreas in a mouse model of Huntingtons disease. The treatment also improved motor function and extended the survival time of the Huntingtons disease mice. These clinical improvements were correlated with reduced accumulation of mhtt protein aggregates in both islet and brain cells. CONCLUSIONS—Targeting both peripheral and neuronal deficits, Ex-4 is an attractive agent for therapeutic intervention in Huntingtons disease patients suffering from diabetes.


PLOS ONE | 2011

Amitriptyline-Mediated Cognitive Enhancement in Aged 3×Tg Alzheimer's Disease Mice Is Associated with Neurogenesis and Neurotrophic Activity

Wayne Chadwick; Nicholas Mitchell; Jenna Caroll; Yu Zhou; Sung-Soo Park; Liyun Wang; Kevin G. Becker; Yongqing Zhang; Elin Lehrmann; William H. Wood; Bronwen Martin; Stuart Maudsley

Approximately 35 million people worldwide suffer from Alzheimers disease (AD). Existing therapeutics, while moderately effective, are currently unable to stem the widespread rise in AD prevalence. AD is associated with an increase in amyloid beta (Aβ) oligomers and hyperphosphorylated tau, along with cognitive impairment and neurodegeneration. Several antidepressants have shown promise in improving cognition and alleviating oxidative stress in AD but have failed as long-term therapeutics. In this study, amitriptyline, an FDA-approved tricyclic antidepressant, was administered orally to aged and cognitively impaired transgenic AD mice (3×TgAD). After amitriptyline treatment, cognitive behavior testing demonstrated that there was a significant improvement in both long- and short-term memory retention. Amitriptyline treatment also caused a significant potentiation of non-toxic Aβ monomer with a concomitant decrease in cytotoxic dimer Aβ load, compared to vehicle-treated 3×TgAD controls. In addition, amitriptyline administration caused a significant increase in dentate gyrus neurogenesis as well as increases in expression of neurosynaptic marker proteins. Amitriptyline treatment resulted in increases in hippocampal brain-derived neurotrophic factor protein as well as increased tyrosine phosphorylation of its cognate receptor (TrkB). These results indicate that amitriptyline has significant beneficial actions in aged and damaged AD brains and that it shows promise as a tolerable novel therapeutic for the treatment of AD.


Diabetes | 2010

Vasoactive intestinal peptide-null mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression.

Bronwen Martin; Yu-Kyong Shin; Caitlin M. White; Sunggoan Ji; Wook Kim; Olga D. Carlson; Joshua K. Napora; Wayne Chadwick; Megan C. Chapter; James A. Waschek; Mark P. Mattson; Stuart Maudsley; Josephine M. Egan

OBJECTIVE It is becoming apparent that there is a strong link between taste perception and energy homeostasis. Recent evidence implicates gut-related hormones in taste perception, including glucagon-like peptide 1 and vasoactive intestinal peptide (VIP). We used VIP knockout mice to investigate VIPs specific role in taste perception and connection to energy regulation. RESEARCH DESIGN AND METHODS Body weight, food intake, and plasma levels of multiple energy-regulating hormones were measured and pancreatic morphology was determined. In addition, the immunocytochemical profile of taste cells and gustatory behavior were examined in wild-type and VIP knockout mice. RESULTS VIP knockout mice demonstrate elevated plasma glucose, insulin, and leptin levels, with no islet β-cell number/topography alteration. VIP and its receptors (VPAC1, VPAC2) were identified in type II taste cells of the taste bud, and VIP knockout mice exhibit enhanced taste preference to sweet tastants. VIP knockout mouse taste cells show a significant decrease in leptin receptor expression and elevated expression of glucagon-like peptide 1, which may explain sweet taste preference of VIP knockout mice. CONCLUSIONS This study suggests that the tongue can play a direct role in modulating energy intake to correct peripheral glycemic imbalances. In this way, we could view the tongue as a sensory mechanism that is bidirectionally regulated and thus forms a bridge between available foodstuffs and the intricate hormonal balance in the animal itself.


International Journal of Alzheimer's Disease | 2010

Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer's Disease

Wayne Chadwick; Randall Brenneman; Bronwen Martin; Stuart Maudsley

Various animal models of Alzheimers disease (AD) have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins. We have used mass analytical techniques and multiple bioinformatic approaches to better appreciate the intricate interactions of these multifunctional proteins in the 3xTgAD murine model of AD. Our results show that there are significant alterations in numerous receptor/cell signaling proteins in cortical lipid rafts isolated from 3xTgAD mice.


PLOS ONE | 2012

VENNTURE–A Novel Venn Diagram Investigational Tool for Multiple Pharmacological Dataset Analysis

Bronwen Martin; Wayne Chadwick; Tie Yi; Sung-Soo Park; Daoyuan Lu; Bin Ni; Shekhar K. Gadkaree; Kathleen Farhang; Kevin G. Becker; Stuart Maudsley

As pharmacological data sets become increasingly large and complex, new visual analysis and filtering programs are needed to aid their appreciation. One of the most commonly used methods for visualizing biological data is the Venn diagram. Currently used Venn analysis software often presents multiple problems to biological scientists, in that only a limited number of simultaneous data sets can be analyzed. An improved appreciation of the connectivity between multiple, highly-complex datasets is crucial for the next generation of data analysis of genomic and proteomic data streams. We describe the development of VENNTURE, a program that facilitates visualization of up to six datasets in a user-friendly manner. This program includes versatile output features, where grouped data points can be easily exported into a spreadsheet. To demonstrate its unique experimental utility we applied VENNTURE to a highly complex parallel paradigm, i.e. comparison of multiple G protein-coupled receptor drug dose phosphoproteomic data, in multiple cellular physiological contexts. VENNTURE was able to reliably and simply dissect six complex data sets into easily identifiable groups for straightforward analysis and data output. Applied to complex pharmacological datasets, VENNTURE’s improved features and ease of analysis are much improved over currently available Venn diagram programs. VENNTURE enabled the delineation of highly complex patterns of dose-dependent G protein-coupled receptor activity and its dependence on physiological cellular contexts. This study highlights the potential for such a program in fields such as pharmacology, genomics, and bioinformatics.


Trends in Neurosciences | 2008

Targeting TNF-α receptors for neurotherapeutics

Wayne Chadwick; Tim Magnus; Bronwen Martin; Aleksander Keselman; Mark P. Mattson; Stuart Maudsley

This research was supported by the Intramural Research Program of the NIH, National Institute on Aging. The authors have no conflicts of scientific interest with respect to the manuscript.


PLOS ONE | 2010

Minimal Peroxide Exposure of Neuronal Cells Induces Multifaceted Adaptive Responses

Wayne Chadwick; Yu Zhou; Sung-Soo Park; Liyun Wang; Matthew Stone; Kevin G. Becker; Bronwen Martin; Stuart Maudsley

Oxidative exposure of cells occurs naturally and may be associated with cellular damage and dysfunction. Protracted low level oxidative exposure can induce accumulated cell disruption, affecting multiple cellular functions. Accumulated oxidative exposure has also been proposed as one of the potential hallmarks of the physiological/pathophysiological aging process. We investigated the multifactorial effects of long-term minimal peroxide exposure upon SH-SY5Y neural cells to understand how they respond to the continued presence of oxidative stressors. We show that minimal protracted oxidative stresses induce complex molecular and physiological alterations in cell functionality. Upon chronic exposure to minimal doses of hydrogen peroxide, SH-SY5Y cells displayed a multifactorial response to the stressor. To fully appreciate the peroxide-mediated cellular effects, we assessed these adaptive effects at the genomic, proteomic and cellular signal processing level. Combined analyses of these multiple levels of investigation revealed a complex cellular adaptive response to the protracted peroxide exposure. This adaptive response involved changes in cytoskeletal structure, energy metabolic shifts towards glycolysis and selective alterations in transmembrane receptor activity. Our analyses of the global responses to chronic stressor exposure, at multiple biological levels, revealed a viable neural phenotype in-part reminiscent of aged or damaged neural tissue. Our paradigm indicates how cellular physiology can subtly change in different contexts and potentially aid the appreciation of stress response adaptations.


Pharmacology & Therapeutics | 2010

Chemical modification of Class II G protein-coupled receptor ligands: Frontiers in the development of peptide analogs as neuroendocrine pharmacological therapies

Megan C. Chapter; Caitlin M. White; Angela M. DeRidder; Wayne Chadwick; Bronwen Martin; Stuart Maudsley

Recent research and clinical data have begun to demonstrate the huge potential therapeutic importance of ligands that modulate the activity of the secretin-like, Class II, G protein-coupled receptors (GPCRs). Ligands that can modulate the activity of these Class II GPCRs may have important clinical roles in the treatment of a wide variety of conditions such as osteoporosis, diabetes, amyotrophic lateral sclerosis and autism spectrum disorders. While these receptors present important new therapeutic targets, the large glycoprotein nature of their cognate ligands poses many problems with respect to therapeutic peptidergic drug design. These native peptides often exhibit poor bioavailability, metabolic instability, poor receptor selectivity and resultant low potencies in vivo. Recently, increased attention has been paid to the structural modification of these peptides to enhance their therapeutic efficacy. Successful modification strategies have included d-amino acid substitutions, selective truncation, and fatty acid acylation of the peptide. Through these and other processes, these novel peptide ligand analogs can demonstrate enhanced receptor subtype selectivity, directed signal transduction pathway activation, resistance to proteolytic degradation, and improved systemic bioavailability. In the future, it is likely, through additional modification strategies such as addition of circulation-stabilizing transferrin moieties, that the therapeutic pharmacopeia of drugs targeted towards Class II secretin-like receptors may rival that of the Class I rhodopsin-like receptors that currently provide the majority of clinically used GPCR-based therapeutics. Currently, Class II-based drugs include synthesized analogs of vasoactive intestinal peptide for type 2 diabetes or parathyroid hormone for osteoporosis.


Cns & Neurological Disorders-drug Targets | 2010

Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration.

Liyun Wang; Wayne Chadwick; Sung-Soo Park; Yu Zhou; Nathan Silver; Bronwen Martin; Stuart Maudsley

Receptors for hormones of the hypothalamic-pituitary-gonadal axis are expressed throughout the brain. Age-related decline in gonadal reproductive hormones cause imbalances of this axis and many hormones in this axis have been functionally linked to neurodegenerative pathophysiology. Gonadotropin-releasing hormone (GnRH) plays a vital role in both central and peripheral reproductive regulation. GnRH has historically been known as a pituitary hormone; however, in the past few years, interest has been raised in GnRH actions at non-pituitary peripheral targets. GnRH ligands and receptors are found throughout the brain where they may act to control multiple higher functions such as learning and memory function and feeding behavior. The actions of GnRH in mammals are mediated by the activation of a unique rhodopsin-like G protein-coupled receptor that does not possess a cytoplasmic carboxyl terminal sequence. Activation of this receptor appears to mediate a wide variety of signaling mechanisms that show diversity in different tissues. Epidemiological support for a role of GnRH in central functions is evidenced by a reduction in neurodegenerative disease after GnRH agonist therapy. It has previously been considered that these effects were not via direct GnRH action in the brain, however recent data has pointed to a direct central action of these ligands outside the pituitary. We have therefore summarized the evidence supporting a central direct role of GnRH ligands and receptors in controlling central nervous physiology and pathophysiology.


Current Alzheimer Research | 2012

Therapeutic Targeting of the Endoplasmic Reticulum in Alzheimers Disease

Wayne Chadwick; Nicholas Mitchell; Bronwen Martin; Stuart Maudsley

The extensive prevalence of Alzheimers disease (AD) places a tremendous burden physiologically, socially and economically upon those directly suffering and those caring for sufferers themselves. Considering the steady increases in numbers of patients diagnosed with Alzheimers, the number of effective pharmacotherapeutic strategies to tackle the disease is still relatively few. As with many other neurodegenerative mechanisms, AD, is characterized by the continued presence and accumulation of cytotoxic protein aggregates, i.e. of beta-amyloid and the microtubule associated protein, tau. Therefore, one novel therapeutic avenue for the treatment of AD may be the actual targeting of factors that control protein synthesis, packaging and degradation. One of the prime cellular targets that, if effectively modulated, could accomplish this is the endoplasmic reticulum (ER). The ER can not only control cellular protein synthesis, trafficking and degradation but it is also closely associated with cytoprotective mechanisms, including calcium ion regulation and unfolded protein responses. This review will delineate some of the most important functional physiological features of the ER that, if effectively modulated, could result in beneficial amelioration or remediation of the negative cellular aspects of AD initiation and progression. While not a classical drug target, even with minimal levels of beneficial modulation, its multifactorial efficacy may amplify small effects resulting in significant therapeutic efficacy.

Collaboration


Dive into the Wayne Chadwick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bronwen Martin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sung-Soo Park

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kevin G. Becker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Liyun Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yu Zhou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William H. Wood

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Caitlin M. Daimon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yongqing Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge