Wayne Conlan
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wayne Conlan.
Infection and Immunity | 2005
Susan M. Twine; Mona Byström; Wangxue Chen; Mats Forsman; Igor Golovliov; Anders Johansson; John F. Kelly; Helena Lindgren; Kerstin Svensson; Carl Zingmark; Wayne Conlan; Anders Sjöstedt
ABSTRACT Francisella tularensis subsp. tularensis (type A) strain SCHU S4 is a prototypic strain of the pathogen that is highly virulent for humans and other mammals. Its intradermal (i.d.) 50% lethal dose (LD50) for mice is <10 CFU. We discovered a spontaneous mutant, designated FSC043, of SCHU S4 with an i.d. LD50 of >108 CFU. FSC043 effectively vaccinated mice against challenge with a highly virulent type A strain, and the protective efficacy was at least as good as that of F. tularensis LVS, an empirically attenuated strain which has been used as an efficacious human vaccine. Comparative proteomics was used to identify two proteins of unknown function that were identified as defective in LVS and FSC043, and deletion mutants of SCHU S4 were created for each of the two encoding genes. One mutant, the ΔFTT0918 strain, failed to express a 58-kDa protein, had an i.d. LD50 of ∼105 CFU, and was found to be less capable than SCHU S4 of growing in peritoneal mouse macrophages. Mice that recovered from sublethal infection with the ΔFTT0918 mutant survived when challenged 2 months later with >100 LD50s of the highly virulent type A strain FSC033. This is the first report of the generation of defined mutants of F. tularensis subsp. tularensis and their use as live vaccines.
Infection and Immunity | 2007
Helena Lindgren; Hua Shen; Carl Zingmark; Igor Golovliov; Wayne Conlan; Anders Sjöstedt
ABSTRACT Francisella tularensis is a facultative intracellular bacterial pathogen capable of proliferating within host macrophages. The mechanisms that explain the differences in virulence between various strains of the species are not well characterized. In the present study, we show that both attenuated (strain LVS) and virulent (strains FSC200 and SCHU S4) strains of the pathogen replicate at similar rates in resting murine peritoneal exudate cells (PEC). However, when PEC were activated by exposure to gamma interferon (IFN-γ), they killed LVS more rapidly than virulent strains of the pathogen. Addition of NG-monomethyl-l-arginine, an inhibitor of inducible nitric oxide synthase, to IFN-γ-treated PEC, completely inhibited killing of the virulent strains, whereas it only partially blocked the killing of LVS. Similarly, in a cell-free system, SCHU S4 and FSC200 were more resistant to killing by H2O2 and ONOO− than F. tularensis LVS. Catalase encoded by katG is a bacterial factor that can detoxify bactericidal compounds such as H2O2 and ONOO−. To investigate its contribution to the virulence of F. tularensis, katG deletion-containing mutants of SCHU S4 and LVS were generated. Both mutants demonstrated enhanced susceptibility to H2O2 in vitro but replicated as effectively as the parental strains in unstimulated PEC. In mice, LVS-ΔkatG was significantly attenuated compared to LVS whereas SCHU S4-ΔkatG, despite slower replication, killed mice as quickly as SCHU S4. This implies that clinical strains of the pathogen have katG-independent mechanisms to combat the antimicrobial effects exerted by H2O2 and ONOO−, the loss of which could have contributed to the attenuation of LVS.
PLOS ONE | 2009
Konstantin Kadzhaev; Carl Zingmark; Igor Golovliov; Mark Bolanowski; Hua Shen; Wayne Conlan; Anders Sjöstedt
Background Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis. Methodology/Principal Findings The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD50 of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably ΔpyrB and ΔrecA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD50 of >103 CFU. In fact, the latter seven mutants showed very marked attenuation with an LD50 of ≥107 CFU. Conclusions/Significance The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis.
Infection and Immunity | 2009
Helena Lindgren; Marie Honn; Igor Golovlev; Konstantin Kadzhaev; Wayne Conlan; Anders Sjöstedt
ABSTRACT We investigated the role of the 58-kDa FTT0918 protein in the iron metabolism of Francisella tularensis. The phenotypes of SCHU S4, a prototypic strain of F. tularensis subsp. tularensis, and the ΔFTT0918 and ΔfslA isogenic mutants were analyzed. The gene product missing in the ΔfslA mutant is responsible for synthesis of a siderophore. When grown in broth with various iron concentrations, the two deletion mutants generally reached lower maximal densities than SCHU S4. The ΔFTT0918 mutant, but not the ΔfslA mutant, upregulated the genes of the F. tularensis siderophore locus (fsl) operon even at high iron concentrations. A chrome azurol sulfonate plate assay confirmed siderophore production by all strains except the ΔfslA strain. In a cross-feeding experiment using medium devoid of free iron, SCHU S4 promoted growth of the ΔfslA strain but not of the ΔFTT0918 strain. The sensitivity of SCHU S4 and the ΔFTT0918 and ΔfslA strains to streptonigrin demonstrated that the ΔFTT0918 strain contained a smaller free intracellular iron pool and that the ΔfslA strain contained a larger one than SCHU S4. In contrast to the marked attenuation of the ΔFTT0918 strain, the ΔfslA strain was as virulent as SCHU S4 in a mouse model. Altogether, the data demonstrate that the FTT0918 protein is required for F. tularensis to utilize iron bound to siderophores and that it likely has a role also in siderophore-independent iron acquisition. We suggest that the FTT0918 protein be designated Fe utilization protein A, FupA.
International Journal of Systematic and Evolutionary Microbiology | 2010
Anders Johansson; Jean Celli; Wayne Conlan; Karen L. Elkins; Mats Forsman; Paul Keim; Pär Larsson; Colin Manoil; Francis E. Nano; Jeannine M. Petersen; Anders Sjöstedt
Objections to the transfer of Francisella novicida to the subspecies rank of Francisella tularensis
PLOS ONE | 2010
Hua Shen; Gregory Harris; Wangxue Chen; Anders Sjöstedt; Patrik Rydén; Wayne Conlan
Background Francisella tularensis is a facultative intracellular bacterial pathogen and the etiological agent of tularemia. The subspecies F. tularensis tularensis is especially virulent for humans when inhaled and respiratory tularemia is associated with high mortality if not promptly treated. A live vaccine strain (LVS) derived from the less virulent holarctica subspecies confers incomplete protection against aerosol challenge with subsp. tularensis. Moreover, correlates of protection have not been established for LVS. Methodology/Principal Findings In the present study we compare molecular immune responses elicited by LVS and two defined deletion mutants of clinical subsp. tularensis strain, SCHU S4, that confer enhanced protection in a mouse model. BALB/c mice were immunized intradermally then challenged with an aerosol of SCHU S4 six weeks later. Changes in the levels of a selected panel of cytokines and chemokines were examined in the lungs, spleens, and sera of vaccinated and challenged mice. Mostly, increased cytokine and chemokine levels correlated with increased bacterial burden. However, after adjusting for this variable, immunization with either of the two Schu S4 mutants resulted in higher levels of several pulmonary cytokines, versus those resulting after LVS immunization, including IL-17. Moreover, treatment of mice immunized with ΔclpB with anti-IL-17 antibodies post-challenge enhanced lung infection. Conclusions/Significance This is the first report characterizing local and systemic cytokine and chemokine responses in mice immunized with vaccines with different efficacies against aerosol challenge with virulent F. tularensis subsp. tularensis. It shows that increases in the levels of most of these immunomodulators, including those known to be critical for protective immunity, do not superficially correlate with protection unless adjusted for the effects of bacterial burden. Additionally, several cytokines were selectively suppressed in the lungs of naïve mice, suggesting that one mechanism of vaccine action is to overcome this pathogen-induced immunosuppression.
Vaccine | 2012
Susan M. Twine; Hua Shen; Gregory Harris; Wangxue Chen; Anders Sjöstedt; Patrik Rydén; Wayne Conlan
Francisella tularensis subspecies tularensis is highly virulent for humans especially when it is inhaled. Therefore, it has the potential to be used as a biothreat agent. Vaccines against F. tularensis will need to be approved in accordance with the FDA Animal Rule. This will require identification of robust correlates of protection in experimental animals and the demonstration that similar immune responses are generated in vaccinated humans. Towards this goal, we have developed an experimental live vaccine strain by deleting the gene, clpB, encoding a heat shock protein from virulent subsp. tularensis strain, SCHU S4. SCHU S4ΔclpB administered intradermally protects BALB/c, but not C57BL/6 mice from subsequent respiratory challenge with wildtype SCHU S4. A comparison of post-vaccination and post-challenge immune responses in these two mouse strains shows an association between several antibody and cytokine responses and protection. In particular, elevated IFNγ levels in the skin 2 days after vaccination, sero-conversion to hypothetical membrane protein FTT_1778c, and to 30S ribosomal protein S1 (FTT_0183c) of F. tularensis after 30 days of vaccination, and elevated levels of pulmonary IL-17 on day 7 after respiratory challenge with SCHU S4 were all associated with protection.
Molecular Immunology | 2013
Patrik Rydén; Susan M. Twine; Hua Shen; Gregory Harris; Wangxue Chen; Anders Sjöstedt; Wayne Conlan
Francisella tularensis subspecies tularensis is an extremely virulent facultative intracellular bacterial pathogen capable of causing significant mortality in humans when inhaled. Consequently, subspecies tularensis was developed as a biological weapon more than 50 years ago. To counter this threat the US Army empirically developed a live vaccine strain, F. tularensis LVS, from the less virulent holarctica subspecies. In human experiments LVS afforded substantial protection against transdermal challenge with clinical subspecies tularensis strain, SCHU S4, but lesser protection against infection initiated by inhalation of the pathogen. Several regulatory and clinical issues remain unresolved for this vaccine, including the absence of a robust correlate of protection. To try to address this, we have developed several defined gene deletion mutants of SCHU S4 that elicit varying degrees of protection in a mouse dermal or respiratory challenge model. In the present study, we have examined whether host immune responses to immunization with such live vaccine candidates can serve as correlates of protection. Antibody responses were unable to distinguish between effective and ineffective vaccine strains. However, several cytokine responses to vaccination showed some promise. Especially, serum levels of TNFα, IFNγ, and MCP-1 between days 4 and 7 after vaccination appear to correlate with protection against respiratory challenge.
Infection and Immunity | 2015
Johan Binesse; Helena Lindgren; Lena Lindgren; Wayne Conlan; Anders Sjöstedt
ABSTRACT Francisella tularensis is a facultative intracellular bacterium utilizing macrophages as its primary intracellular habitat and is therefore highly capable of resisting the effects of reactive oxygen species (ROS), potent mediators of the bactericidal activity of macrophages. We investigated the roles of enzymes presumed to be important for protection against ROS. Four mutants of the highly virulent SCHU S4 strain with deletions of the genes encoding catalase (katG), glutathione peroxidase (gpx), a DyP-type peroxidase (FTT0086), or double deletion of FTT0086 and katG showed much increased susceptibility to hydrogen peroxide (H2O2) and slightly increased susceptibility to paraquat but not to peroxynitrite (ONOO−) and displayed intact intramacrophage replication. Nevertheless, mice infected with the double deletion mutant showed significantly longer survival than SCHU S4-infected mice. Unlike the aforementioned mutants, deletion of the gene coding for alkyl-hydroperoxide reductase subunit C (ahpC) generated a mutant much more susceptible to paraquat and ONOO− but not to H2O2. It showed intact replication in J774 cells but impaired replication in bone marrow-derived macrophages and in internal organs of mice. The live vaccine strain, LVS, is more susceptible than virulent strains to ROS-mediated killing and possesses a truncated form of FTT0086. Expression of the SCHU S4 FTT0086 gene rendered LVS more resistant to H2O2, which demonstrates that the SCHU S4 strain possesses additional detoxifying mechanisms. Collectively, the results demonstrate that SCHU S4 ROS-detoxifying enzymes have overlapping functions, and therefore, deletion of one or the other does not critically impair the intracellular replication or virulence, although AhpC appears to have a unique function.
PLOS Pathogens | 2016
Mélanie Rigard; Jeanette E. Bröms; Amandine Mosnier; Maggy Hologne; Amandine Martin; Lena Lindgren; Claire Punginelli; Claire Lays; Olivier Walker; Alain Charbit; Philippe Telouk; Wayne Conlan; Laurent Terradot; Anders Sjöstedt; Thomas Henry
The virulence of Francisella tularensis, the etiological agent of tularemia, relies on an atypical type VI secretion system (T6SS) encoded by a genomic island termed the Francisella Pathogenicity Island (FPI). While the importance of the FPI in F. tularensis virulence is clearly established, the precise role of most of the FPI-encoded proteins remains to be deciphered. In this study, using highly virulent F. tularensis strains and the closely related species F. novicida, IglG was characterized as a protein featuring a unique α-helical N-terminal extension and a domain of unknown function (DUF4280), present in more than 250 bacterial species. Three dimensional modeling of IglG and of the DUF4280 consensus protein sequence indicates that these proteins adopt a PAAR-like fold, suggesting they could cap the T6SS in a similar way as the recently described PAAR proteins. The newly identified PAAR-like motif is characterized by four conserved cysteine residues, also present in IglG, which may bind a metal atom. We demonstrate that IglG binds metal ions and that each individual cysteine is required for T6SS-dependent secretion of IglG and of the Hcp homologue, IglC and for the F. novicida intracellular life cycle. In contrast, the Francisella-specific N-terminal α-helical extension is not required for IglG secretion, but is critical for F. novicida virulence and for the interaction of IglG with another FPI-encoded protein, IglF. Altogether, our data suggest that IglG is a PAAR-like protein acting as a bi-modal protein that may connect the tip of the Francisella T6SS with a putative T6SS effector, IglF.