Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne E. Clarke is active.

Publication


Featured researches published by Wayne E. Clarke.


Genome Biology | 2014

Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea

Isobel A. P. Parkin; Chushin Koh; Haibao Tang; Stephen J. Robinson; Sateesh Kagale; Wayne E. Clarke; Christopher D. Town; John Nixon; Vivek Krishnakumar; Shelby Bidwell; Harry Belcram; Matthew G. Links; Jérémy Just; Carling Clarke; Tricia Bender; Terry Huebert; Annaliese S. Mason; J. Chris Pires; Guy C. Barker; Jonathan D. Moore; Peter Glen Walley; Sahana Manoli; Jacqueline Batley; David Edwards; Matthew N. Nelson; Xiyin Wang; Andrew H. Paterson; Graham J. King; Ian Bancroft; Boulos Chalhoub

BackgroundBrassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus.ResultsWe generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event.ConclusionsDifferential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes.


Nature Communications | 2014

The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure

Sateesh Kagale; Chushin Koh; John Nixon; Venkatesh Bollina; Wayne E. Clarke; Reetu Tuteja; Charles Spillane; Stephen J. Robinson; Matthew G. Links; Carling Clarke; Erin E. Higgins; Terry Huebert; Andrew G. Sharpe; Isobel A. P. Parkin

Camelina sativa is an oilseed with desirable agronomic and oil-quality attributes for a viable industrial oil platform crop. Here we generate the first chromosome-scale high-quality reference genome sequence for C. sativa and annotated 89,418 protein-coding genes, representing a whole-genome triplication event relative to the crucifer model Arabidopsis thaliana. C. sativa represents the first crop species to be sequenced from lineage I of the Brassicaceae. The well-preserved hexaploid genome structure of C. sativa surprisingly mirrors those of economically important amphidiploid Brassica crop species from lineage II as well as wheat and cotton. The three genomes of C. sativa show no evidence of fractionation bias and limited expression-level bias, both characteristics commonly associated with polyploid evolution. The highly undifferentiated polyploid genome of C. sativa presents significant consequences for breeding and genetic manipulation of this industrial oil crop.


BMC Genomics | 2013

Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil

Andrew G. Sharpe; Larissa Ramsay; Lacey-Anne Sanderson; Michael Fedoruk; Wayne E. Clarke; Rong Li; Sateesh Kagale; Perumal Vijayan; Albert Vandenberg; Kirstin E. Bett

BackgroundThe genus Lens comprises a range of closely related species within the galegoid clade of the Papilionoideae family. The clade includes other important crops (e.g. chickpea and pea) as well as a sequenced model legume (Medicago truncatula). Lentil is a global food crop increasing in importance in the Indian sub-continent and elsewhere due to its nutritional value and quick cooking time. Despite this importance there has been a dearth of genetic and genomic resources for the crop and this has limited the application of marker-assisted selection strategies in breeding.ResultsWe describe here the development of a deep and diverse transcriptome resource for lentil using next generation sequencing technology. The generation of data in multiple cultivated (L. culinaris) and wild (L. ervoides) genotypes together with the utilization of a bioinformatics workflow enabled the identification of a large collection of SNPs and the subsequent development of a genotyping platform that was used to establish the first comprehensive genetic map of the L. culinaris genome. Extensive collinearity with M. truncatula was evident on the basis of sequence homology between mapped markers and the model genome and large translocations and inversions relative to M. truncatula were identified. An estimate for the time divergence of L. culinaris from L. ervoides and of both from M. truncatula was also calculated.ConclusionsThe availability of the genomic and derived molecular marker resources presented here will help change lentil breeding strategies and lead to increased genetic gain in the future.


The Plant Cell | 2014

Polyploid Evolution of the Brassicaceae during the Cenozoic Era

Sateesh Kagale; Stephen J. Robinson; John Nixon; Rong Xiao; Terry Huebert; Janet A. Condie; Dallas Kessler; Wayne E. Clarke; Patrick P. Edger; Matthew G. Links; Andrew G. Sharpe; Isobel A. P. Parkin

This study identified multiple whole-genome duplication (WGD) events among Brassicaceae species. Remarkably, these events, as well as previously identified WGD events, are synchronized in age, coincident with epoch transitions, adding to the evidence suggesting the environmental instability associated with these transitions favors polyploidy and rapid species diversification. The Brassicaceae (Cruciferae) family, owing to its remarkable species, genetic, and physiological diversity as well as its significant economic potential, has become a model for polyploidy and evolutionary studies. Utilizing extensive transcriptome pyrosequencing of diverse taxa, we established a resolved phylogeny of a subset of crucifer species. We elucidated the frequency, age, and phylogenetic position of polyploidy and lineage separation events that have marked the evolutionary history of the Brassicaceae. Besides the well-known ancient α (47 million years ago [Mya]) and β (124 Mya) paleopolyploidy events, several species were shown to have undergone a further more recent (∼7 to 12 Mya) round of genome multiplication. We identified eight whole-genome duplications corresponding to at least five independent neo/mesopolyploidy events. Although the Brassicaceae family evolved from other eudicots at the beginning of the Cenozoic era of the Earth (60 Mya), major diversification occurred only during the Neogene period (0 to 23 Mya). Remarkably, the widespread species divergence, major polyploidy, and lineage separation events during Brassicaceae evolution are clustered in time around epoch transitions characterized by prolonged unstable climatic conditions. The synchronized diversification of Brassicaceae species suggests that polyploid events may have conferred higher adaptability and increased tolerance toward the drastically changing global environment, thus facilitating species radiation.


BMC Plant Biology | 2009

An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches

Stephen J. Robinson; Lily H Tang; Brent Mooney; Sheldon J. McKay; Wayne E. Clarke; Matthew G. Links; Steven R. Karcz; Sharon Regan; Yun Yun Wu; Margaret Y. Gruber; De-Jun Cui; Min Yu; Isobel A. P. Parkin

BackgroundFunctional genomics tools provide researchers with the ability to apply high-throughput techniques to determine the function and interaction of a diverse range of genes. Mutagenised plant populations are one such resource that facilitate gene characterisation. They allow complex physiological responses to be correlated with the expression of single genes in planta, through either reverse genetics where target genes are mutagenised to assay the affect, or through forward genetics where populations of mutant lines are screened to identify those whose phenotype diverges from wild type for a particular trait. One limitation of these types of populations is the prevalence of gene redundancy within plant genomes, which can mask the affect of individual genes. Activation or enhancer populations, which not only provide knock-out but also dominant activation mutations, can facilitate the study of such genes.ResultsWe have developed a population of almost 50,000 activation tagged A. thaliana lines that have been archived as individual lines to the T3 generation. The population is an excellent tool for both reverse and forward genetic screens and has been used successfully to identify a number of novel mutants. Insertion site sequences have been generated and mapped for 15,507 lines to enable further application of the population, while providing a clear distribution of T-DNA insertions across the genome. The population is being screened for a number of biochemical and developmental phenotypes, provisional data identifying novel alleles and genes controlling steps in proanthocyanidin biosynthesis and trichome development is presented.ConclusionThis publicly available population provides an additional tool for plant researchers to assist with determining gene function for the many as yet uncharacterised genes annotated within the Arabidopsis genome sequence http://aafc-aac.usask.ca/FST. The presence of enhancer elements on the inserted T-DNA molecule allows both knock-out and dominant activation phenotypes to be identified for traits of interest.


Molecular Plant Pathology | 2012

Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa

Christina Eynck; Ginette Séguin-Swartz; Wayne E. Clarke; Isobel A. P. Parkin

The ascomycete Sclerotinia sclerotiorum is a necrotrophic plant pathogen with an extremely broad host range. It causes stem rot in Camelina sativa, a crucifer with great potential as an alternative oilseed crop. Lignification is a common phenomenon in the expression of resistance against necrotrophs, but the molecular mechanisms underlying this defence response are poorly understood. We present histochemical, gene expression and biochemical data investigating the role of monolignols in the resistance of C. sativa to S. sclerotiorum. Comparative studies with resistant and susceptible lines of C. sativa revealed substantial differences in constitutive transcript levels and gene regulation patterns for members of the gene family encoding cinnamoyl-CoA reductase (CCR), the first enzyme specifically committed to the synthesis of lignin monomers. These differences were associated with anatomical and metabolic factors. While the induction of CsCCR2 expression after inoculation with S. sclerotiorum was associated with the deposition of lignin mainly derived from guaiacyl monomers, high constitutive levels of CsCCR4 paralleled a high syringyl lignin content in healthy stems of resistant plants. The results provide evidence that plant cell wall strengthening plays a role in the resistance of C. sativa to S. sclerotiorum, and that both constitutive and inducible defence mechanisms contribute to reduced symptom development in resistant germplasm. This study provides the first characterization of quantitative resistance in C. sativa to S. sclerotiorum.


PLOS ONE | 2013

Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L

Wayne E. Clarke; Isobel A. P. Parkin; Humberto A. Gajardo; Daniel J. Gerhardt; Erin E. Higgins; Christine Sidebottom; Andrew G. Sharpe; Rod J. Snowdon; Maria L. Federico; Federico L. Iniguez-Luy

Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species.


Molecular Breeding | 2015

Single-nucleotide polymorphism identification and genotyping in Camelina sativa

Ravinder Singh; Venkatesh Bollina; Erin E. Higgins; Wayne E. Clarke; Christina Eynck; Christine Sidebottom; Richard Gugel; Rod J. Snowdon; Isobel A. P. Parkin

Camelina sativa, a largely relict crop, has recently returned to interest due to its potential as an industrial oilseed. Molecular markers are key tools that will allow C. sativa to benefit from modern breeding approaches. Two complementary methodologies, capture of 3′ cDNA tags and genomic reduced-representation libraries, both of which exploited second generation sequencing platforms, were used to develop a low density (768) Illumina GoldenGate single nucleotide polymorphism (SNP) array. The array allowed 533 SNP loci to be genetically mapped in a recombinant inbred population of C. sativa. Alignment of the SNP loci to the C. sativa genome identified the underlying sequenced regions that would delimit potential candidate genes in any mapping project. In addition, the SNP array was used to assess genetic variation among a collection of 175 accessions of C. sativa, identifying two sub-populations, yet low overall gene diversity. The SNP loci will provide useful tools for future crop improvement of C. sativa.


Methods of Molecular Biology | 2016

Analysis of Genotyping-by-Sequencing (GBS) Data.

Sateesh Kagale; Chushin Koh; Wayne E. Clarke; Venkatesh Bollina; Isobel A. P. Parkin; Andrew G. Sharpe

The development of genotyping-by-sequencing (GBS) to rapidly detect nucleotide variation at the whole genome level, in many individuals simultaneously, has provided a transformative genetic profiling technique. GBS can be carried out in species with or without reference genome sequences yields huge amounts of potentially informative data. One limitation with the approach is the paucity of tools to transform the raw data into a format that can be easily interrogated at the genetic level. In this chapter we describe bioinformatics tools developed to address this shortfall together with experimental design considerations to fully leverage the power of GBS for genetic analysis.


G3: Genes, Genomes, Genetics | 2018

Detecting de Novo Homoeologous Recombination Events in Cultivated Brassica napus Using a Genome-Wide SNP Array

Erin E. Higgins; Wayne E. Clarke; Elaine C. Howell; Susan J. Armstrong; Isobel A. P. Parkin

The heavy selection pressure due to intensive breeding of Brassica napus has created a narrow gene pool, limiting the ability to produce improved varieties through crosses between B. napus cultivars. One mechanism that has contributed to the adaptation of important agronomic traits in the allotetraploid B. napus has been chromosomal rearrangements resulting from homoeologous recombination between the constituent A and C diploid genomes. Determining the rate and distribution of such events in natural B. napus will assist efforts to understand and potentially manipulate this phenomenon. The Brassica high-density 60K SNP array, which provides genome-wide coverage for assessment of recombination events, was used to assay 254 individuals derived from 11 diverse cultivated spring type B. napus. These analyses identified reciprocal allele gain and loss between the A and C genomes and allowed visualization of de novo homoeologous recombination events across the B. napus genome. The events ranged from loss/gain of 0.09 Mb to entire chromosomes, with almost 5% aneuploidy observed across all gametes. There was a bias toward sub-telomeric exchanges leading to genome homogenization at chromosome termini. The A genome replaced the C genome in 66% of events, and also featured more dominantly in gain of whole chromosomes. These analyses indicate de novo homoeologous recombination is a continuous source of variation in established Brassica napus and the rate of observed events appears to vary with genetic background. The Brassica 60K SNP array will be a useful tool in further study and manipulation of this phenomenon.

Collaboration


Dive into the Wayne E. Clarke's collaboration.

Top Co-Authors

Avatar

Isobel A. P. Parkin

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sateesh Kagale

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Robinson

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Erin E. Higgins

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Matthew G. Links

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Nixon

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Venkatesh Bollina

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Christina Eynck

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge