Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne F. J. Evans is active.

Publication


Featured researches published by Wayne F. J. Evans.


Geophysical Research Letters | 2005

Atmospheric Chemistry Experiment (ACE): Mission overview

Peter F. Bernath; C. T. McElroy; M. C. Abrams; C. D. Boone; M. Butler; C. Camy-Peyret; Michel Carleer; Cathy Clerbaux; Pierre-François Coheur; Réginald Colin; P. DeCola; M. DeMazière; James R. Drummond; Denis G. Dufour; Wayne F. J. Evans; H. Fast; Didier Fussen; K. Gilbert; D. E. Jennings; E. J. Llewellyn; R. P. Lowe; Emmanuel Mahieu; J. C. McConnell; Martin J. McHugh; Sean D. McLeod; R. Michaud; Clive Midwinter; Ray Nassar; Florian Nichitiu; Caroline R. Nowlan

SCISAT-1, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian satellite mission for remote sensing of the Earths atmosphere. It was launched into low Earth circular orbit (altitude 650 km, inclination 74°) on 12 Aug. 2003. The primary ACE instrument is a high spectral resolution (0.02 cm-1) Fourier Transform Spectrometer (FTS) operating from 2.2 to 13.3 μm (750-4400 cm-1). The satellite also features a dual spectrophotometer known as MAESTRO with wavelength coverage of 285-1030 nm and spectral resolution of 1-2 nm. A pair of filtered CMOS detector arrays records images of the Sun at 0.525 and 1.02 μm. Working primarily in solar occultation, the satellite provides altitude profile information (typically 10-100 km) for temperature, pressure, and the volume mixing ratios for several dozen molecules of atmospheric interest, as well as atmospheric extinction profiles over the latitudes 85°N to 85°S. This paper presents a mission overview and some of the first scientific results. Copyright 2005 by the American Geophysical Union.


Journal of Geophysical Research | 2005

Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite

P. Ricaud; Franck Lefèvre; Gwenael Berthet; Donal P. Murtagh; E. J. Llewellyn; G. Mégie; E. Kyrölä; G.W. Leppelmeier; H. Auvinen; Cathy Boonne; Samuel Brohede; D. A. Degenstein; J. De La Noë; E. Dupuy; L. El Amraoui; Patrick Eriksson; Wayne F. J. Evans; U. Frisk; R. L. Gattinger; F. X. Girod; C. S. Haley; S. Hassinen; Alain Hauchecorne; C. Jiménez; E. Kyrö; N. Lautie; E. Le Flochmoën; N. D. Lloyd; J. C. McConnell; Ian C. McDade

In September 2002 the Antarctic polar vortex split in two under the influence of a sudden warming. During this event, the Odin satellite was able to measure both ozone (O3) and chlorine monoxide (ClO), a key constituent responsible for the so-called “ozone hole”, together with nitrous oxide (N2O), a dynamical tracer, and nitric acid (HNO3) and nitrogen dioxide (NO2), tracers of denitrification. The submillimeter radiometer (SMR) microwave instrument and the Optical Spectrograph and Infrared Imager System (OSIRIS) UV-visible light spectrometer (VIS) and IR instrument on board Odin have sounded the polar vortex during three different periods: before (19–20 September), during (24–25 September), and after (1–2 and 4–5 October) the vortex split. Odin observations coupled with the Reactive Processes Ruling the Ozone Budget in the Stratosphere (REPROBUS) chemical transport model at and above 500 K isentropic surfaces (heights above 18 km) reveal that on 19–20 September the Antarctic vortex was dynamically stable and chemically nominal: denitrified, with a nearly complete chlorine activation, and a 70% O3 loss at 500 K. On 25–26 September the unusual morphology of the vortex is monitored by the N2O observations. The measured ClO decay is consistent with other observations performed in 2002 and in the past. The vortex split episode is followed by a nearly complete deactivation of the ClO radicals on 1–2 October, leading to the end of the chemical O3 loss, while HNO3 and NO2 fields start increasing. This acceleration of the chlorine deactivation results from the warming of the Antarctic vortex in 2002, putting an early end to the polar stratospheric cloud season. The model simulation suggests that the vortex elongation toward regions of strong solar irradiance also favored the rapid reformation of ClONO2. The observed dynamical and chemical evolution of the 2002 polar vortex is qualitatively well reproduced by REPROBUS. Quantitative differences are mainly attributable to the too weak amounts of HNO3 in the model, which do not produce enough NO2 in presence of sunlight to deactivate chlorine as fast as observed by Odin.


Geophysical Research Letters | 1993

Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS

Gordon G. Shepherd; Gérard Thuillier; Brian H. Solheim; S. Chandra; L. L. Cogger; M. L. Duboin; Wayne F. J. Evans; R. L. Gattinger; William A. Gault; M. Hersé; Alain Hauchecorne; C. Lathuilliere; E. J. Llewellyn; R. P. Lowe; H. Teitelbaum; F. Vial

WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, began atmospheric observations on September 28, 1991 and since then has been collecting data on winds, temperatures and emissions rates from atomic, molecular and ionized oxygen species, as well as hydroxyl. The validation of winds and temperatures is not yet complete, and scientific interpretation has barely begun, but the dominant characteristic of these data so far is the remarkable structure in the emission rate from the excited species produced by the recombination of atomic oxygen. The latitudinal and temporal variability has been noted before by many others. In this preliminary report on WINDII results we draw attention to the dramatic longitudinal variations of planetary wave character in atomic oxygen concentration, as reflected in the OI 557.7 nm emission, and to similar variations seen in the Meinel hydroxyl band emission.


Journal of Geophysical Research | 2003

Stratospheric profiles of nitrogen dioxide observed by Optical Spectrograph and Infrared Imager System on the Odin satellite

Christopher E. Sioris; C. S. Haley; Chris A. McLinden; Christian von Savigny; Ian C. McDade; J. C. McConnell; Wayne F. J. Evans; N. D. Lloyd; Edward J. Llewellyn; Kelly Chance; Thomas P. Kurosu; Donal P. Murtagh; U. Frisk; K. Pfeilsticker; H. Bösch; Frank Weidner; Kimberly Strong; J. Stegman; G. Mégie

[1] Vertical profiles of nitrogen dioxide in the 19–40 km altitude range are successfully retrieved over the globe from Optical Spectrograph and Infrared Imager System (OSIRIS) limb scatter observations in late 2001 and early 2002. The inclusion of multiple scattering in the radiative transfer model used in the inversion algorithm allows for the retrieval of NO2 down to 19 km. The slant column densities, which represent the observations in the inversion, are obtained by fitting the fine structure in normalized radiance spectra over the 435–449 nm range, where NO2 electronic absorption is readily observable because of long light paths through stratospheric layers rich in this constituent. Details of the spectral fitting and inversion algorithm are discussed, including the discovery of a pseudo-absorber associated with pixelated detectors and a new method to verify altitude registration. Comparisons are made with spatially and temporally coincident profile measurements of this photochemically active trace gas. Better than 20% agreement is obtained with all correlative measurements over the common retrieval altitude range, confirming the validity of OSIRIS NO2 profiles. Systematic biases in the number densities are not observed at any altitude. A ‘‘snapshot’’ meridional cross section between 40� N and 70� S is shown from observations during a fraction of an orbit. INDEX TERMS: 0340 Atmospheric Composition and Structure: Middle atmosphere—composition and chemistry; 0360 Atmospheric Composition and Structure: Transmission and scattering of radiation; 0394 Atmospheric Composition and Structure: Instruments and techniques; 3334 Meteorology and Atmospheric Dynamics: Middle atmosphere dynamics (0341, 0342); KEYWORDS: optical, Sun-synchronous, polar-orbiting, Fraunhofer, Ring effect, iterative onion peel


Journal of Geophysical Research | 2004

Global variability of mesospheric temperature : Mean temperature field

Marianna G. Shepherd; Wayne F. J. Evans; G. Hernandez; D. Offermann; H. Takahashi

[1] Daytime zonally (longitudinally) averaged temperatures from the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) and nightly temperatures from various ground-based hydroxyl airglow observations are employed in the study of the global and seasonal variability of the upper mesospheric temperature field. The study examines the latitudinal variability of the annual cycle of mesospheric temperature at 75, 82, and 87 km employing 7 years (1991-1997) of WINDII mesospheric temperature data at latitudes from 20°S to 65°N at 75 km, 35°S to 65°N at 82 km, and from 45°S to 65°N at 87 km height. Particular attention is given to the latitude region of ±40° around the equator. Harmonic analysis of the 7-year temperature time series reveals the presence of a dominant annual, ∼90- and 60-day oscillations at high northern latitudes and a strong semiannual oscillation (SAO) at equatorial and tropical latitudes. A quasi-biennial oscillation (QBO) is also identified extending from 45°S to 65°N. At 75 km the SAO is manifested as minima in the temperature composites at spring and fall equinox and maxima at winter and summer solstice; at 87 km the SAO is out of phase with respect to the 75-km SAO, with maxima at equinox and minima around the solstice periods. The phase reversal takes place around 82 km and is associated with a mesospheric temperature inversion between 77 and 86 km height. Accounting for tidal contribution by adopting tidal predictions by the Extended Canadian Middle Atmosphere Model (CMAM) shows that a strong temperature decrease (∼35 K) seen during the 1993 March equinox at equatorial and tropical latitudes is not associated with solar migrating tides. WINDII global climatology derived at 75, 82, and 87 km revealed mesospheric SAO asymmetry with a stronger September equinox and interhemispheric asymmetry with a quieter and colder southern hemisphere. Comparisons with independent ground-based observations and the Solar Mesospheric Explorer (SME) satellite data are also presented showing good to excellent agreement in the derived annual and SAO parameters. The results presented provide the first high-vertical-and-temporal resolution global daytime temperature climatology in the upper mesosphere and in the vicinity of the mesopause.


Geophysical Research Letters | 1995

Observation of polar mesospheric clouds in summer, 1993 by the WINDII Instrument on UARS

Wayne F. J. Evans; L.R. LaFramboise; K. R. Sine; R. H. Wiens; Gordon G. Shepherd

Satellite images of polar mesospheric clouds (PMCs) were taken in support of the 1993 ANLC campaign. In July, 1993, they were common at latitudes north of 65°N but increased in abundance poleward to the limit of our viewing horizon of 72°N. The southern boundary edge of the PMCs was observed to move northwards as the season progressed in 1993. Compared with the climatology of other years, the ANLC campaign observations were taken towards the end of a season in a year of modest PMC activity. WINDII, the wind imaging interferometer on the UARS satellite, is a new effective tool in the study of polar mesospheric clouds. Images of the limb give vertical distributions of the light scattered by the molecular and the particle atmosphere. Detection of the PMCs against the Rayleigh background showed that the peak altitude was around 83 km in 1993.


Geophysical Research Letters | 2000

Impact of rotational Raman scattering in the O2A band

Christopher E. Sioris; Wayne F. J. Evans

Radiative transfer calculations with scattering and absorption by aerosols and molecules are used to estimate the magnitude of the Ring effect in the O2A band. Rotational Raman scattering significantly alters the A band line depths and shapes for a satellite nadir-viewing case at high solar zenith angles in the absence of thick clouds. In the limb view, at low spectral resolution, the only impact of rotational Raman scattering is that it significantly reduces the radiance in the shoulder of the R branch. The latter effect is also observed for zenith viewing geometry from the ground.


Journal of Atmospheric Chemistry | 1990

Balloon Intercomparison Campaigns: Results of remote sensing measurements of HCl

C. B. Farmer; B. Carli; A. Bonetti; M. Carlotti; B. M. Dinelli; H. Fast; Wayne F. J. Evans; N. Louisnard; C. Alamichel; William G. Mankin; M. T. Coffey; I. G. Nolt; D. G. Murcray; A. Goldman; Gerald M. Stokes; D. W. Johnson; Wesley A. Traub; Kelly Chance; Rodolphe Zander; Ginette Roland; L. Delbouille

All of the techniques used to measure stratospheric HCl during the two BIC campaigns involved high resolution infrared spectroscopy. The balloon-borne instruments included five different spectrometers, three operating in the solar absorption mode and two in emission (at distinctly different wavelengths). Ground-based and aircraft correlative measurements were made close to the balloon locations, again by near-infrared spectroscopy.Within this set of results, comparisons between different techniques (absorption vs emission) viewing the same airmass (i.e., on the same gondola) were possible, as were comparisons between the same technique used on different gondolas spaced closely in time and location. The final results yield a mean profile of concentration of HC1 between 18 and 40 km altitude; an envelope of ±15% centered on this profile encompasses all of the results within one standard deviation of their individual mean values. The absolute accuracy of the final profile is estimated to be no worse than 10%. It is concluded also that the measurement techniques for HCl have reached a level of performance where a precision of 10% to 15% can be confidently expected.


Applied Optics | 1999

Filling in of Fraunhofer and gas-absorption lines in sky spectra as caused by rotational Raman scattering

Christopher E. Sioris; Wayne F. J. Evans

A line-by-line radiative-transfer model to quantify the Ring effect as caused by rotational Raman scattering has been developed for the 310-550-nm spectral interval. The solar zenith angle and the resolution are key input parameters, as is the sky spectrum (excluding inelastic atmospheric scattering), which was modeled with MODTRAN 3.5. The filling in is modeled for ground-based viewing geometry and includes surface reflection and single inelastic scattering. It is shown that O2 contributes half of the filling in of N2. A strong inverse relationship with wavelength is noted in the filling in. A comparison with observations shows moderate agreement. The largest filling in occurs in the Ca II K and H lines.


Geophysical Research Letters | 2004

Comparison of the Odin/OSIRIS stratospheric ozone profiles with coincident POAM III and ozonesonde measurements

Svetlana V. Petelina; E. J. Llewellyn; D. A. Degenstein; N. D. Lloyd; R. L. Gattinger; C. S. Haley; C. von Savigny; Erik Griffioen; Ian C. McDade; Wayne F. J. Evans; Donal P. Murtagh; J. De La Noë

We present first statistical comparison results for stratospheric ozone density profiles retrieved from Odin/OSIRIS limb scattered radiance with 1220 coincident POAM III and 205 coincident ozonesonde measurements. Profiles are compared on a monthly basis from November 2001 to October 2002. Most of the time, differences between OSIRIS mean profiles and those measured by POAM III and ozonesondes were 5-7% between 15 km and 32 km, and within 15% above 32 km. In April-July 2002, OSIRIS mean profiles appear shifted downward by ∼1 km, introducing a difference of about 10% with POAM III and about 25% with ozonesonde profiles between 15 km and 32 km. This study demonstrates that outside the April-July 2002 period, the OSIRIS ozone profiles agree well with coincident ozonesonde and POAM III ozone profiles and make a valuable addition to the international ozone database available for research into global ozone change.

Collaboration


Dive into the Wayne F. J. Evans's collaboration.

Top Co-Authors

Avatar

R. L. Gattinger

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. J. Llewellyn

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. A. Degenstein

University of Saskatchewan

View shared research outputs
Researchain Logo
Decentralizing Knowledge