Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne G. Wamer is active.

Publication


Featured researches published by Wayne G. Wamer.


Free Radical Biology and Medicine | 1997

Oxidative damage to nucleic acids photosensitized by titanium dioxide.

Wayne G. Wamer; Jun-Jie Yin; Rong Rong Wei

The semiconductor TiO2 is known to have photobiological activity in prokaryotic and eukaryotic cells. Applications of this photobiological activity have been suggested including sterilization of waste water and phototherapy of malignant cells. Here, several model and cellular systems were used to study the mechanism of photocatalysis by TiO2. Treatment of TiO2 (anatase, 0.45 microns), suspended in water containing a spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), with UV radiation (320 nm) resulted in an electron spin resonance (ESR) signal characteristic of the hydroxyl radical. Irradiation of solutions containing calf thymus DNA and TiO2 with UVA (320-400 nm) radiation resulted in hydroxylation of guanine bases. The degree of hydroxylation was dependent on both UVA fluence and amount of TiO2 in suspension. Human skin fibroblasts, preincubated 18 h with 10 micrograms/cm2 TiO2 and then UVA-irradiated (0-58 KJ/m2), showed dose dependent photocytoxicity. RNA, isolated from similarly treated fibroblasts, contained significant levels of photooxidation, measured as hydroxylation of guanine bases. However, no oxidative damage was detectable in cellular DNA. These results suggest that nucleic acids are a potential target for photooxidative damage sensitized by TiO2, and support the view that TiO2 photocatalyzes free radical formation.


Journal of the American Chemical Society | 2014

Photogenerated Charge Carriers and Reactive Oxygen Species in ZnO/Au Hybrid Nanostructures with Enhanced Photocatalytic and Antibacterial Activity

Weiwei He; Hyun-Kyung Kim; Wayne G. Wamer; David Melka; John H. Callahan; Jun-Jie Yin

Semiconductor nanostructures with photocatalytic activity have the potential for many applications including remediation of environmental pollutants and use in antibacterial products. An effective way for promoting photocatalytic activity is depositing noble metal nanoparticles (NPs) on a semiconductor. In this paper, we demonstrated the successful deposition of Au NPs, having sizes smaller than 3 nm, onto ZnO NPs. ZnO/Au hybrid nanostructures having different molar ratios of Au to ZnO were synthesized. It was found that Au nanocomponents even at a very low Au/ZnO molar ratio of 0.2% can greatly enhance the photocatalytic and antibacterial activity of ZnO. Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au NPs on the generation of reactive oxygen species and photoinduced charge carriers. Deposition of Au NPs onto ZnO resulted in a dramatic increase in light-induced generation of hydroxyl radical, superoxide and singlet oxygen, and production of holes and electrons. The enhancing effect of Au was dependent on the molar ratio of Au present in the ZnO/Au nanostructures. Consistent with these results from ESR measurements, ZnO/Au nanostructures also exhibited enhanced photocatalytic and antibacterial activity. These results unveiled the enhanced mechanism of Au on ZnO and these materials have great potential for use in water purification and antibacterial products.


Biomaterials | 2009

The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials

Jun Jie Yin; Fang Lao; Peter P. Fu; Wayne G. Wamer; Yuliang Zhao; Paul C. Wang; Yang Qiu; Baoyun Sun; Gengmei Xing; Jinquan Dong; Xing-Jie Liang; Chunying Chen

We demonstrated that three different types of water-soluble fullerenes materials can intercept all of the major physiologically relevant ROS. C(60)(C(COOH)(2))(2), C(60)(OH)(22), and Gd@C(82)(OH)(22) can protect cells against H(2)O(2)-induced oxidative damage, stabilize the mitochondrial membrane potential and reduce intracellular ROS production with the following relative potencies: Gd@C(82)(OH)(22)> or =C(60)(OH)(22)>C(60)(C(COOH)(2))(2). Consistent with their cytoprotective abilities, these derivatives can scavenge the stable 2,2-diphenyl-1-picryhydrazyl radical (DPPH), and the reactive oxygen species (ROS) superoxide radical anion (O(2)(*-)), singlet oxygen, and hydroxyl radical (HO(*)), and can also efficiently inhibit lipid peroxidation in vitro. The observed differences in free radical-scavenging capabilities support the hypothesis that both chemical properties, such as surface chemistry induced differences in electron affinity, and physical properties, such as degree of aggregation, influence the biological and biomedical activities of functionalized fullerenes. This represents the first report that different types of fullerene derivatives can scavenge all physiologically relevant ROS. The role of oxidative stress and damage in the etiology and progression of many diseases suggests that these fullerene derivatives may be valuable in vivo cytoprotective and therapeutic agents.


Biomaterials | 2012

Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles

Weiwei He; Yu-Ting Zhou; Wayne G. Wamer; Mary D. Boudreau; Jun-Jie Yin

Many of the chemical and biological effects of silver nanoparticles (Ag NPs) are attributed to the generation of reactive oxygen species (ROS). ESR spectroscopy was used to provide direct evidence for generating ROS during decomposition of H(2)O(2) assisted by Ag NPs. Hydroxyl radical formation was observed under acidic conditions and was accompanied by dissolution of Ag NPs. In contrast, evolution of O(2) was observed in alkaline solutions containing H(2)O(2) and Ag NPs; however, no net dissolution of Ag NPs was observed due to re-reduction of Ag(+) as evidenced by a cyclic reaction. Since H(2)O(2) is a biologically relevant product being continuously generated in cells, these results obtained under conditions mimicking different biological microenvironments may provide insights for finding new biomedical applications for Ag NPs and for risk assessment.


Biomaterials | 2013

Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging

Weiwei He; Yu-Ting Zhou; Wayne G. Wamer; Xiaona Hu; Xiaochun Wu; Zhi Zheng; Mary D. Boudreau; Jun-Jie Yin

Gold nanoparticles have received a great deal of interest due to their unique optical and catalytic properties and biomedical applications. Developing applications as well as assessing associated risks requires an understanding of the interactions between Au nanoparticles (NPs) and biologically active substances. In this paper, electron spin resonance spectroscopy (ESR) was used to investigate the catalytic activity of Au NPs in biologically relevant reactions. We report here that Au NPs can catalyze the rapid decomposition of hydrogen peroxide. Decomposition of hydrogen peroxide is accompanied by the formation of hydroxyl radicals at lower pH and oxygen at higher pH. In addition, we found that, mimicking SOD, Au NPs efficiently catalyze the decomposition of superoxide. These results demonstrate that Au NPs can act as SOD and catalase mimetics. Since reactive oxygen species are biologically relevant products being continuously generated in cells, these results obtained under conditions resembling different biological microenvironments may provide insights for evaluating risks associated with Au NPs.


Journal of Food and Drug Analysis | 2014

Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species.

Weiwei He; Yitong Liu; Wayne G. Wamer; Jun-Jie Yin

Many of the biological applications and effects of nanomaterials are attributed to their ability to facilitate the generation of reactive oxygen species (ROS). Electron spin resonance (ESR) spectroscopy is a direct and reliable method to identify and quantify free radicals in both chemical and biological environments. In this review, we discuss the use of ESR spectroscopy to study ROS generation mediated by nanomaterials, which have various applications in biological, chemical, and materials science. In addition to introducing the theory of ESR, we present some modifications of the method such as spin trapping and spin labeling, which ultimately aid in the detection of short-lived free radicals. The capability of metal nanoparticles in mediating ROS generation and the related mechanisms are also presented.


Journal of Food and Drug Analysis | 2014

Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides

Haohao Wu; Jun-Jie Yin; Wayne G. Wamer; Mingyong Zeng; Y. Martin Lo

Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances.


Journal of Environmental Science and Health Part C-environmental Carcinogenesis & Ecotoxicology Reviews | 2014

Enzyme-Like Activity of Nanomaterials

Weiwei He; Wayne G. Wamer; Qingsu Xia; Jun-Jie Yin; Peter P. Fu

Due to possessing an extremely small size and a large surface area per unit of volume, nanomaterials have specific characteristic physical, chemical, photochemical, and biological properties that are very useful in many new applications. Nanoparticles’ catalytic activity and intrinsic ability in generating or scavenging reactive oxygen species in general can be used to mimic the catalytic activity of natural enzymes. Many nanoparticles with enzyme-like activities have been found, potentially capable of being applied for commercial uses, such as in biosensors, pharmaceutical processes, and the food industry. To date, a variety of nanoparticles, especially those formed from noble metals, have been determined to possess oxidase-like, peroxidase-like, catalase-like, and/or superoxide dismutase-like activity. The ability of nanoparticles to mimic enzymatic activity, especially peroxidase mimics, can be used in a variety of applications, such as detection of glucose in biological samples and waste water treatment. To study the enzyme-like activity of nanoparticles, the electron spin resonance method represents a critically important and convenient analytical approach for zero-time detection of the reactive substrates and products as well as for mechanism determination.


Free Radical Biology and Medicine | 2003

In vitro studies on the photobiological properties of aloe emodin and aloin A.

Wayne G. Wamer; Peter Vath; Daniel E. Falvey

Plants containing aloin A, aloe emodin, and structurally related anthraquinones have long been used as traditional medicines and in the formulation of retail products such as laxatives, dietary supplements, and cosmetics. Since a recent study indicated that topically applied aloe emodin increases the sensitivity of skin to UV light, we examined the events following photoexcitation of aloin A and aloe emodin. We determined that incubation of human skin fibroblasts with 20 microM aloe emodin for 18 h followed by irradiation with UV or visible light resulted in significant photocytotoxicity. This photocytotoxicity was accompanied by oxidative damage in both cellular DNA and RNA. In contrast, no photocytotoxicity was observed following incubation with up to 500 microM aloin A and irradiation with UVA light. In an attempt to explain the different photobiological properties of aloin A and aloe emodin, laser flash photolysis experiments were performed. We determined that the triplet state of aloe emodin was readily formed following photoexcitation. However, no transient intermediates were formed following photoexcitation of aloin A. Therefore, generation of reactive oxygen species and oxidative damage after irradiation of aloin A is unlikely. Although aloin A was not directly photocytotoxic, we found that human skin fibroblasts can metabolize aloin A to aloe emodin.


ACS Applied Materials & Interfaces | 2014

Unraveling the Enhanced Photocatalytic Activity and Phototoxicity of ZnO/Metal Hybrid Nanostructures from Generation of Reactive Oxygen Species and Charge Carriers

Weiwei He; Haohao Wu; Wayne G. Wamer; Hyun-Kyung Kim; Jiwen Zheng; Huimin Jia; Zhi Zheng; Jun-Jie Yin

An effective way for promoting photocatalytic activity of a semiconductor is deposition of noble metal nanoparticles (NPs) onto it. In this paper, we deposited Ag and Pd onto ZnO NPs to form ZnO/Ag and ZnO/Pd hybrid nanostructures. It was found that both Ag and Pd nanocomponents can greatly enhance the photocatalytic activity and phototoxicity of ZnO toward human skin cells. Using electron spin resonance spectroscopy with spin trapping and spin labeling techniques, we observed that either deposition of Ag or Pd resulted in a significant increase in photogenerated electrons and holes and production of reactive oxygen species including hydroxyl radicals, superoxide, and singlet oxygen. We compared the enhancing effects of Ag and Pd and found that Pd is more effective than Ag in promoting the generation of hydroxyl radicals and holes and the photocatalytic activity of ZnO. Conversely, Ag is more effective than Pd in enhancing electron transfer and the generation of superoxide and singlet oxygen. The mechanism underlying the differences in the effects of Ag and Pd may be related to differences in Fermi levels for Ag and Pd and band bending accompanied by effects on Schottky barriers. The results of these studies provide information valuable for designing hybrid nanomaterials having photocatalytic and photobiological activities useful for applications such as water purification and formulation of antibacterial products.

Collaboration


Dive into the Wayne G. Wamer's collaboration.

Top Co-Authors

Avatar

Jun-Jie Yin

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Peter P. Fu

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Paul C. Howard

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Qingsu Xia

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrija Kornhauser

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Mary D. Boudreau

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Rong Rong Wei

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haohao Wu

Center for Food Safety and Applied Nutrition

View shared research outputs
Researchain Logo
Decentralizing Knowledge