Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne Loescher is active.

Publication


Featured researches published by Wayne Loescher.


Plant Physiology | 1994

Gas Exchange and Carbon Partitioning in the Leaves of Celery (Apium graveolens L.) at Various Levels of Root Zone Salinity.

John D. Everard; Riccardo Gucci; Susan C. Kann; James A. Flore; Wayne Loescher

Both mannitol and sucrose (Suc) are primary photosynthetic products in celery (Apium graveolens L.). In other biological systems mannitol has been shown to serve as a compatible solute or osmoprotectant involved in stress tolerance. Although mannitol, like Suc, is translocated and serves as a reserve carbohydrate in celery, its role in stress tolerance has yet to be resolved. Mature celery plants exposed to low (25 mM NaCl), intermediate (100 mM NaCl), and high (300 mM NaCl) salinities displayed substantial salt tolerance. Shoot fresh weight was increased at low NaCl concentrations when compared with controls, and growth continued, although at slower rates, even after prolonged exposure to high salinities. Gas-exchange analyses showed that low NaCl levels had little or no effect on photosynthetic carbon assimilation (A), but at intermediate levels decreases in stomatal conductance limited A, and at the highest NaCl levels carboxylation capacity (as measured by analyses of the CO2 assimilation response to changing internal CO2 partial pressures) and electron transport (as indicated by fluorescence measurements) were the apparent prevailing limits to A. Increasing salinities up to 300 mM, however, increased mannitol accumulation and decreased Suc and starch pools in leaf tissues, e.g. the ratio of mannitol to Suc increased almost 10-fold. These changes were due in part to shifts in photosynthetic carbon partitioning (as measured by 14C labeling) from Suc into mannitol. Salt treatments increased the activity of mannose-6-phosphate reductase (M6PR), a key enzyme in mannitol biosynthesis, 6-fold in young leaves and 2-fold in fully expanded, mature leaves, but increases in M6PR protein were not apparent in the older leaves. Mannitol biosynthetic capacity (as measured by labeling rates) was maintained despite salt treatment, and relative partitioning into mannitol consequently increased despite decreased photosynthetic capacity. The results support a suggested role for mannitol accumulation in adaptation to and tolerance of salinity stress.


BMC Plant Biology | 2010

Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves

Li Jun Wang; Ling Fan; Wayne Loescher; Wei Duan; Guo Jie Liu; Jian Shan Cheng; Hai Bo Luo; Shaohua Li

BackgroundAlthough the effect of salicylic acid (SA) on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side). In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25°C), during heat stress (43°C for 5 h), and through the following recovery period (25°C). Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs) in the chloroplast were also investigated.ResultsSA did not significantly (P < 0.05) influence the net photosynthesis rate (Pn) of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activition state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA) under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated) leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P < 0.05) influenced by SA. Before heat stress, SA did not affect level of HSP 21, but the HSP21 immune signal increased in both SA-treated and control leaves during heat stress. During the recovery period, HSP21 levels remained high through the end of the experiment in the SA-treated leaves, but decreased in controls.ConclusionSA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activition state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.


Plant Physiology | 2003

Cloning, Expression, and Characterization of Sorbitol Transporters from Developing Sour Cherry Fruit and Leaf Sink Tissues

Zhifang Gao; Laurence Maurousset; Rémi Lemoine; Sang Dong Yoo; Steven van Nocker; Wayne Loescher

The acyclic polyol sorbitol is a primary photosynthetic product and the principal photosynthetic transport substance in many economically important members of the family Rosaceace (e.g. almond [Prunus dulcis (P. Mill.) D.A. Webber], apple [Malus pumila P. Mill.], cherry [Prunus spp.], peach [Prunus persicaL. Batsch], and pear [Pyrus communis]). To understand key steps in long-distance transport and particularly partitioning and accumulation of sorbitol in sink tissues, we have cloned two sorbitol transporter genes (PcSOT1 andPcSOT2) from sour cherry (Prunus cerasus) fruit tissues that accumulate large quantities of sorbitol. Sorbitol uptake activities and other characteristics were measured by heterologous expression of PcSOT1 andPcSOT2 in yeast (Saccharomyces cerevisiae). Both genes encode proton-dependent, sorbitol-specific transporters with similar affinities (K m sorbitol of 0.81 mm for PcSOT1 and 0.64 mm for PcSOT2). Analyses of gene expression of these transporters, however, suggest different roles during leaf and fruit development. PcSOT1 is expressed throughout fruit development, but especially when growth and sorbitol accumulation rates are highest. In leaves, PcSOT1 expression is highest in young, expanding tissues, but substantially less in mature leaves. In contrast, PcSOT2 is mainly expressed only early in fruit development and not in leaves. Compositional analyses suggest that transport mediated by PcSOT1 and PcSOT2 plays a major role in sorbitol and dry matter accumulation in sour cherry fruits. Presence of these transporters and the high fruit sorbitol concentrations suggest that there is an apoplastic step during phloem unloading and accumulation in these sink tissues. Expression of PcSOT1 in young leaves before completion of the transition from sink to source is further evidence for a role in determining sink activity.


Journal of Experimental Botany | 2011

Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes

Zhulong Chan; Rebecca Grumet; Wayne Loescher

Mannitol is a putative osmoprotectant contributing to salt tolerance in several species. Arabidopsis plants transformed with the mannose-6-phosphate reductase (M6PR) gene from celery were dramatically more salt tolerant (at 100 mM NaCl) as exhibited by reduced salt injury, less inhibition of vegetative growth, and increased seed production relative to the wild type (WT). When treated with 200 mM NaCl, transformants produced no seeds, but did bolt, and exhibited less chlorosis/necrosis and greater survival and dry weights than the WT. Without salt there were no M6PR effects on growth or phenotype, but expression levels of 2272 genes were altered. Many fewer differences (1039) were observed between M6PR and WT plants in the presence of salt, suggesting that M6PR pre-conditioned the plants to stress. Previous work suggested that mannitol is an osmoprotectant, but mannitol levels are invariably quite low, perhaps inadequate for osmoprotectant effects. In this study, transcriptome analysis reveals that the M6PR transgene activated the downstream abscisic acid (ABA) pathway by up-regulation of ABA receptor genes (PYL4, PYL5, and PYL6) and down-regulation of protein phosphatase 2C genes (ABI1 and ABI2). In the M6PR transgenic lines there were also increases in transcripts related to redox and cell wall-strengthening pathways. These data indicate that mannitol-enhanced stress tolerance is due at least in part to increased expression of a variety of stress-inducible genes.


Functional Plant Biology | 2007

Response of mannitol-producing Arabidopsis thaliana to abiotic stress

Christine M. Sickler; Gerald E. Edwards; Olavi Kiirats; Zhifang Gao; Wayne Loescher

In celery, mannitol is a primary photosynthetic product that is associated with celerys exceptional salt tolerance. Arabidopsis plants transformed with celerys mannose-6-phosphate reductase (M6PR) gene produce mannitol and grow normally in the absence of stress. Daily analysis of the increase in growth (fresh and dry weight, leaf number, leaf area per plant and specific leaf weight) over a 12-day period showed less effect of salt (100 mm NaCl) on the M2 transformant than wild type (WT). Following a 12-day treatment of WT, M2 and M5 plants with 100 or 200 mm NaCl the total shoot fresh weight, leaf number, and leaf area were significantly greater in transformants than in WT plants. The efficiency of use of energy for photochemistry by PSII was measured daily under growth conditions. In WT plants treated with 100 mm NaCl, the PSII yield begin decreasing after 6 days with a 50% loss in yield after 12 days, indicating a severe loss in PSII efficiency; whereas, there was no effect on the transformants. Under atmospheric levels of CO2, growth with 200 mm NaCl caused an increase in the substomatal levels of CO2 in WT plants but not in transformants. It also caused a marked decrease in carboxylation efficiency under limiting levels of CO2 in WT compared with transformants. When stress was imposed and growth reduced by withholding water for 12 days, which resulted in a similar decrease in relative water content to salt-treated plants, there were no differences among the genotypes in PSII yields or growth. The results suggest mannitol, which is known to be a compatible solute and antioxidant, protects photosynthesis against salt-related damage to chloroplasts.


Plant Physiology | 1997

Molecular cloning of mannose-6-phosphate reductase and its developmental expression in celery.

John D. Everard; Claudio Cantini; Rebecca Grumet; Julie Plummer; Wayne Loescher

Compared with other primary photosynthetic products (e.g. sucrose and starch), little is known about sugar alcohol metabolism, its regulation, and the manner in which it is integrated with other pathways. Mannose-6-phosphate reductase (M6PR) is a key enzyme that is involved in mannitol biosynthesis in celery (Apium graveolens L.). The M6PR gene was cloned from a leaf cDNA library, and clonal authenticity was established by assays of M6PR activity, western blots, and comparisons of the deduced amino acid sequence with a celery M6PR tryptic digestion product. Recombinant M6PR, purified from Escherichia coli, had specific activity, molecular mass, and kinetic characteristics indistinguishable from those of authentic celery M6PR. Sequence analyses showed M6PR to be a member of the aldo-keto reductase superfamily, which includes both animal and plant enzymes. The greatest sequence similarity was with aldose-6-phosphate reductase (EC 1.1.1.200), a key enzyme in sorbitol synthesis in Rosaceae. Developmental studies showed M6PR to be limited to green tissues and to be under tight transcriptional regulation during leaf initiation, expansion, and maturation. These data confirmed a close relationship between the development of photosynthetic capacity, mannitol synthesis, and M6PR activity.


PLOS ONE | 2011

Photosynthetic Responses to Heat Treatments at Different Temperatures and following Recovery in Grapevine (Vitis amurensis L.) Leaves

Hai Bo Luo; Ling Ma; Hui Feng Xi; Wei Duan; Shaohua Li; Wayne Loescher; Jun Fang Wang; Li Jun Wang

Background The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. Methodology/Findings The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P n). However, with treatments at 40 and 45°C, P n was decreased, accompanied by an increase in substomatal CO2 concentration (C i), decreases in stomatal conductance (g s) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P n, gs and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P n during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. Conclusions Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P n in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P n in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.


Plant Physiology | 1993

Mannose-6-Phosphate Reductase, a Key Enzyme in Photoassimilate Partitioning, Is Abundant and Located in the Cytosol of Photosynthetically Active Cells of Celery (Apium graveolens L.) Source Leaves'

John D. Everard; Vincent R. Franceschi; Wayne Loescher

Mannitol, a major photosynthetic product and transport carbohydrate in many plants, accounts for approximately 50% of the carbon fixed by celery (Apium graveolens L.) leaves. Previous subfractionation studies of celery leaves indicated that the enzymes for mannitol synthesis were located in the cytosol, but these data are inconsistent with that published for the sites of sugar alcohol synthesis in other families and taxa, including apple (Malus) and a brown alga (Fucus). Using antibodies to a key synthetic enzyme, NADPH-dependent mannose-6-phosphate reductase (M6PR), and immunocytochemical techniques, we have resolved both the inter-cellular and intracellular sites of mannitol synthesis. In leaves, M6PR was found only in cells containing ribulose-1,5-bisphosphate carboxylase/oxygenase. M6PR was almost exclusively cytosolic in these cells, with the nucleus being the only organelle to show labeling. The key step in transport carbohydrate biosynthesis that is catalyzed by M6PR displays no apparent preferential association with vascular tissues or with the bundle sheath. These results show that M6PR and, thus, mannitol synthesis are closely associated with the distribution of photosynthetic carbon metabolism in celery leaves. The principal role of M6PR is, therefore, in the assimilation of carbon being exported from the chloroplast, and it seems unlikely that this enzyme plays even an indirect role in phloem loading of mannitol.


Plant Biotechnology Journal | 2012

Comparison of salt stress resistance genes in transgenic Arabidopsis thaliana indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects.

Zhulong Chan; Patrick J. Bigelow; Wayne Loescher; Rebecca Grumet

Engineered abiotic stress resistance is an important target for increasing agricultural productivity. There are concerns, however, regarding possible ecological impacts of transgenic crops. In contrast to the first wave of transgenic crops, many abiotic stress resistance genes can initiate complex downstream changes. Transcriptome profiling has been suggested as a comprehensive non-targeted approach to examine the secondary effects. We compared phenotypic and transcriptomic effects of constitutive expression of genes intended to confer salt stress tolerance by three different mechanisms: a transcription factor, CBF3/DREB1a; a metabolic gene, M6PR, for mannitol biosynthesis; and the Na⁺/H⁺ antiporter, SOS1. Transgenic CBF3, M6PR and SOS1 Arabidopsis thaliana were grown together in the growth chamber, greenhouse and field. In the absence of salt, M6PR and SOS1 lines performed comparably with wild type; CBF3 lines exhibited dwarfing as reported previously. All three transgenes conferred fitness advantage when subjected to 100 mm NaCl in the growth chamber. CBF3 and M6PR affected transcription of numerous abiotic stress-related genes as measured by Affymetrix microarray analysis. M6PR additionally modified expression of biotic stress and oxidative stress genes. Transcriptional effects of SOS1 in the absence of salt were smaller and primarily limited to redox-related genes. The extent of transcriptome change, however, did not correlate with the effects on growth and reproduction. Thus, the magnitude of global transcriptome differences may not predict phenotypic differences upon which environment and selection act to influence fitness. These observations have implications for interpretation of transcriptome analyses in the context of risk assessment and emphasize the importance of evaluation within a phenotypic context.


Archive | 2000

Regulation of Sugar Alcohol Biosynthesis

Wayne Loescher; John D. Everard

Although we have long known that sugar alcohols can be important primary photosynthetic products involved in storage and translocation, there has been very little information on gene expression or regulation of enzyme activities associated with metabolism of these compounds. Recent studies, however, indicate that sugar alcohol metabolism is probably as tightly regulated as is conventional carbon metabolism in sink and source tissues. Sugar alcohols have also been demonstrated to be associated with the development of tolerance to drought, salt, temperature, and related stresses, and there is quite limited, but increasing evidence of stress-related regulation of genes and enzymes associated with sugar alcohols. Moreover, several studies of plants transformed with a capacity for sugar alcohol biosynthesis now indicate that these plants have enhanced stress tolerance. All this has important implications for crop improvement and developing understanding of stress tolerance mechanisms in plants.

Collaboration


Dive into the Wayne Loescher's collaboration.

Top Co-Authors

Avatar

John D. Everard

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Rebecca Grumet

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Zhifang Gao

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

James A. Flore

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Shaohua Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Duan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhulong Chan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guo Qing Song

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge