Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne M. Yokoyama is active.

Publication


Featured researches published by Wayne M. Yokoyama.


Science | 2011

Innate or Adaptive Immunity? The Example of Natural Killer Cells

Eric Vivier; David H. Raulet; Alessandro Moretta; Michael A. Caligiuri; Laurence Zitvogel; Lewis L. Lanier; Wayne M. Yokoyama; Sophie Ugolini

Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity endowed with constitutive cytolytic functions. More recently, a more nuanced view of NK cells has emerged. NK cells are now recognized to express a repertoire of activating and inhibitory receptors that is calibrated to ensure self-tolerance while allowing efficacy against assaults such as viral infection and tumor development. Moreover, NK cells do not react in an invariant manner but rather adapt to their environment. Finally, recent studies have unveiled that NK cells can also mount a form of antigen-specific immunologic memory. NK cells thus exert sophisticated biological functions that are attributes of both innate and adaptive immunity, blurring the functional borders between these two arms of the immune response.


Nature | 2005

Licensing of natural killer cells by host major histocompatibility complex class I molecules

Sungjin Kim; Jennifer Poursine-Laurent; Steven M. Truscott; Lonnie Lybarger; Yun Jeong Song; Liping Yang; Anthony R. French; John B. Sunwoo; Suzanne Lemieux; Ted H. Hansen; Wayne M. Yokoyama

Self versus non-self discrimination is a central theme in biology from plants to vertebrates, and is particularly relevant for lymphocytes that express receptors capable of recognizing self-tissues and foreign invaders. Comprising the third largest lymphocyte population, natural killer (NK) cells recognize and kill cellular targets and produce pro-inflammatory cytokines. These potentially self-destructive effector functions can be controlled by inhibitory receptors for the polymorphic major histocompatibility complex (MHC) class I molecules that are ubiquitously expressed on target cells. However, inhibitory receptors are not uniformly expressed on NK cells, and are germline-encoded by a set of polymorphic genes that segregate independently from MHC genes. Therefore, how NK-cell self-tolerance arises in vivo is poorly understood. Here we demonstrate that NK cells acquire functional competence through ‘licensing’ by self-MHC molecules. Licensing involves a positive role for MHC-specific inhibitory receptors and requires the cytoplasmic inhibitory motif originally identified in effector responses. This process results in two types of self-tolerant NK cells—licensed or unlicensed—and may provide new insights for exploiting NK cells in immunotherapy. This self-tolerance mechanism may be more broadly applicable within the vertebrate immune system because related germline-encoded inhibitory receptors are widely expressed on other immune cells.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Recognition of a virus-encoded ligand by a natural killer cell activation receptor

Hamish R. C. Smith; Jonathan W. Heusel; Indira K. Mehta; Sungjin Kim; Brigitte G. Dorner; Olga V. Naidenko; Koho Iizuka; Hiroshi Furukawa; Diana L. Beckman; Jeanette T. Pingel; Anthony A. Scalzo; Daved H. Fremont; Wayne M. Yokoyama

Natural killer (NK) cells express inhibitory and activation receptors that recognize MHC class I-like molecules on target cells. These receptors may be involved in the critical role of NK cells in controlling initial phases of certain viral infections. Indeed, the Ly49H NK cell activation receptor confers in vivo genetic resistance to murine cytomegalovirus (MCMV) infections, but its ligand was previously unknown. Herein, we use heterologous reporter cells to demonstrate that Ly49H recognizes MCMV-infected cells and a ligand encoded by MCMV itself. Exploiting a bioinformatics approach to the MCMV genome, we find at least 11 ORFs for molecules with previously unrecognized features of predicted MHC-like folds and limited MHC sequence homology. We identify one of these, m157, as the ligand for Ly49H. m157 triggers Ly49H-mediated cytotoxicity, and cytokine and chemokine production by freshly isolated NK cells. We hypothesize that the other ORFs with predicted MHC-like folds may be involved in immune evasion or interactions with other NK cell receptors.


Nature Reviews Immunology | 2003

Immune functions encoded by the natural killer gene complex

Wayne M. Yokoyama; Beatrice F. Plougastel

There has been marked progress in our understanding of the role of natural killer (NK) cells in immune responses, mainly due to the identification of NK-cell receptors and their ligands. The genes encoding many NK-cell receptors are located in the NK-gene complex (NKC). Here, we review the properties of NKC-encoded receptors, and provide a genomic and conceptual framework for an insight into NK-cell function and biology.


Nature Immunology | 2002

In vivo developmental stages in murine natural killer cell maturation

Sungjin Kim; Koho Iizuka; Hyun Seok P Kang; Ayontunde Dokun; Anthony R. French; Suellen Greco; Wayne M. Yokoyama

Natural killer (NK) cells develop in the bone marrow, but their in vivo stages of maturation, expansion and acquisition of receptors that guide target cell specificity are not well defined. We describe here such stages of development. We also show that developing NK cells actively proliferate at a phenotypically distinguishable immature stage after they have acquired expression of Ly49 and CD94-NKG2 receptors. These studies provide a developmental framework for NK cell maturation in vivo and suggest the possible involvement of the Ly49 and CD94-NKG2 receptors themselves in modulating expansion of NK cell populations with a given NK cell receptor repertoire.


Immunity | 2014

Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation

Slava Epelman; Kory J. Lavine; Anna E. Beaudin; Dorothy K. Sojka; Javier A. Carrero; Boris Calderon; Thaddeus Brija; Emmanuel L. Gautier; Stoyan Ivanov; Ansuman T. Satpathy; Joel D. Schilling; Reto A. Schwendener; Ismail Sergin; Babak Razani; E. Camilla Forsberg; Wayne M. Yokoyama; Emil R. Unanue; Marco Colonna; Gwendalyn J. Randolph; Douglas L. Mann

Cardiac macrophages are crucial for tissue repair after cardiac injury but are not well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6c(hi) monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins, and strategies to regulate compartment size.


Nature Immunology | 2001

Specific and nonspecific NK cell activation during virus infection

Ayotunde O. Dokun; Sungjin Kim; Hamish R. C. Smith; Hyun Seok P Kang; Dortha T. Chu; Wayne M. Yokoyama

The natural killer (NK) cell activation receptor Ly49H is required for resistance to murine cytomegalovirus (MCMV). We show here that NK cell proliferation and production of interferon-γ (IFN-γ) was not dependent on Ly49H expression during early MCMV infection. During a later phase of infection, however, Ly49H+ NK cells selectively proliferated and this expansion was blocked by anti-Ly49H administration. With vaccinia virus infection, neither the early nor late phase of NK cell proliferation was selective for Ly49H+ NK cells. These findings indicated that Ly49H+ NK cells were specifically activated by MCMV and that MCMV infection was characterized by nonspecific and specific phases of NK cell activation in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Cytokine-induced memory-like natural killer cells

Megan A. Cooper; Julie M. Elliott; Peter A. Keyel; Liping Yang; Javier A. Carrero; Wayne M. Yokoyama

The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-γ) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naïve hosts can be specifically detected 7–22 days later when they are phenotypically similar to naïve cells and are not constitutively producing IFN-γ. However, they produce significantly more IFN-γ when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naïve NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells.


Nature Immunology | 2002

NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation.

Susan Gilfillan; Emily L. Ho; Marina Cella; Wayne M. Yokoyama; Marco Colonna

NKG2D is a receptor on natural killer (NK) cells and cytotoxic T lymphocytes that binds major histocompatibility complex (MHC) class I–like ligands expressed primarily on virally infected and neoplastic cells. In vitro studies indicate that NKG2D provides costimulation through an associated adapter, DAP10, which recruits phosphatidylinositol-3 kinase. Here we show that in DAP10-deficient mice, CD8+ T cells lack NKG2D expression and are incapable of mounting tumor-specific responses. However, DAP10-deficient NK cells express a functional NKG2D receptor due to the association of NKG2D with another adapter molecule, DAP12 (also known as KARAP), which recruits protein tyrosine kinases. Thus, NKG2D is a versatile receptor that, depending on the availability of adapter partners, mediates costimulation in T cells and/or activation in NK cells.


Nature Immunology | 2000

Now you see it, now you don't!

Wayne M. Yokoyama

NK cells become cytotoxic upon receiving a signal through their activation receptors. The orphan proteins H-60 and Rae1 have now been identified as ligands for the mouse NKG2D activation receptor. Remarkably they are inducible and may be blocked by a viral protein.

Collaboration


Dive into the Wayne M. Yokoyama's collaboration.

Researchain Logo
Decentralizing Knowledge