Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne R. Pryor is active.

Publication


Featured researches published by Wayne R. Pryor.


Science | 2006

Enceladus' water vapor plume.

Candice J. Hansen; Larry W. Esposito; A. I. F. Stewart; Joshua E. Colwell; Amanda R. Hendrix; Wayne R. Pryor; Donald E. Shemansky; Richard D. West

The Cassini spacecraft flew close to Saturns small moon Enceladus three times in 2005. Cassinis UltraViolet Imaging Spectrograph observed stellar occultations on two flybys and confirmed the existence, composition, and regionally confined nature of a water vapor plume in the south polar region of Enceladus. This plume provides an adequate amount of water to resupply losses from Saturns E ring and to be the dominant source of the neutral OH and atomic oxygen that fill the Saturnian system.


Journal of Geophysical Research | 1998

Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission

John Clarke; G. Ballester; John T. Trauger; Joe Ajello; Wayne R. Pryor; K. Tobiska; J. E. P. Connerney; G. Randall Gladstone; J. H. Waite; Lotfi Ben Jaffel; Jean-Claude Gérard

Hubble Space Telescope (HST) Wide-Field Planetary Camera 2 (WFPC 2) images of Jupiters aurora have been obtained close in time with Galileo ultraviolet spectrometer (UVS) spectra and in situ particles, fields, and plasma wave measurements between June 1996 and July 1997, overlapping Galileo orbits G1, G2, G7, G8, and C9. This paper presents HST images of Jupiters aurora as a first step toward a comparative analysis of the auroral images with the in situ Galileo data. The WFPC 2 images appear similar to earlier auroral images, with the main ovals at similar locations to those observed over the preceding 2 years, and rapidly variable emissions poleward of the main ovals. Further examples have been observed of the equatorward surge of the auroral oval over 140–180° longitude as this region moves from local morning to afternoon. Comparison of the WFPC 2 reference auroral ovals north and south with the VIP4 planetary magnetic field model suggests that the main ovals map along magnetic field lines exceeding 15 RJ, and that the Io footprint locations have lead angles of 0–10° from the instantaneous magnetic projection. There was an apparent dawn auroral storm on June 23, 1996, and projections of the three dawn storms imaged with HST to date demonstrate that these appear consistently along the WFPC 2 reference oval. Auroral emissions have been consistently observed from Ios magnetic footprints on Jupiter. Possible systematic variations in brightness are explored, within factor of 6 variations in brightness with time. Images are also presented marked with expected locations of any auroral footprints associated with the satellites Europa and Ganymede, with localized emissions observed at some times but not at other times.


web science | 2009

Response of Jupiter's and Saturn's auroral activity to the solar wind

John Clarke; J. D. Nichols; Jean-Claude Gérard; Denis Grodent; Kenneth Calvin Hansen; W. S. Kurth; G. R. Gladstone; J. Duval; S. Wannawichian; E. J. Bunce; S. W. H. Cowley; Frank Judson Crary; Michele K. Dougherty; L. Lamy; D. G. Mitchell; Wayne R. Pryor; Kurt D. Retherford; Tom Stallard; Bertalan Zieger; P. Zarka; Baptiste Cecconi

[1] While the terrestrial aurorae are known to be driven primarily by the interaction of the Earth’s magnetosphere with the solar wind, there is considerable evidence that auroral emissions on Jupiter and Saturn are driven primarily by internal processes, with the main energy source being the planets’ rapid rotation. Prior observations have suggested there might be some influence of the solar wind on Jupiter’s aurorae and indicated that auroral storms on Saturn can occur at times of solar wind pressure increases. To investigate in detail the dependence of auroral processes on solar wind conditions, a large campaign of observations of these planets has been undertaken using the Hubble Space Telescope, in association with measurements from planetary spacecraft and solar wind conditions both propagated from 1 AU and measured near each planet. The data indicate a brightening of both the auroral emissions and Saturn kilometric radiation at Saturn close in time to the arrival of solar wind shocks and pressure increases, consistent with a direct physical relationship between Saturnian auroral processes and solar wind conditions. At Jupiter the correlation is less strong, with increases in total auroral power seen near the arrival of solar wind forward shocks but little increase observed near reverse shocks. In addition, auroral dawn storms have been observed when there was little change in solar wind conditions. The data are consistent with some solar wind influence on some Jovian auroral processes, while the auroral activity also varies independently of the solar wind. This extensive data set will serve to constrain theoretical models for the interaction of the solar wind with the magnetospheres of Jupiter and Saturn.


Science | 2010

LRO-LAMP observations of the LCROSS impact plume.

G. Randall Gladstone; Dana M. Hurley; Kurt D. Retherford; Paul D. Feldman; Wayne R. Pryor; Jean-Yves Chaufray; Maarten H. Versteeg; Thomas K. Greathouse; Andrew Joseph Steffl; Henry Blair Throop; Joel Wm. Parker; David E. Kaufmann; Anthony F. Egan; Michael W. Davis; David C. Slater; J. Mukherjee; Paul F. Miles; Amanda R. Hendrix; Anthony Colaprete; S. Alan Stern

Watering the Moon About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, Colaprete et al. (p. 463; see the news story by Kerr; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. Schultz et al. (p. 468) monitored the different stages of the impact and the resulting plume. Gladstone et al. (p. 472), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H2, CO, Ca, Hg, and Mg in the impact plume, and Hayne et al. (p. 477) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. Paige et al. (p. 479) mapped cryogenic zones predictive of volatile entrapment, and Mitrofanov et al. (p. 483) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. A controlled spacecraft impact into a crater in the lunar south pole plunged through the lunar soil, revealing water and other volatiles. On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) sent a kinetic impactor to strike Cabeus crater, on a mission to search for water ice and other volatiles expected to be trapped in lunar polar soils. The Lyman Alpha Mapping Project (LAMP) ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) observed the plume generated by the LCROSS impact as far-ultraviolet emissions from the fluorescence of sunlight by molecular hydrogen and carbon monoxide, plus resonantly scattered sunlight from atomic mercury, with contributions from calcium and magnesium. The observed light curve is well simulated by the expansion of a vapor cloud at a temperature of ~1000 kelvin, containing ~570 kilograms (kg) of carbon monoxide, ~140 kg of molecular hydrogen, ~160 kg of calcium, ~120 kg of mercury, and ~40 kg of magnesium.


Journal of Geophysical Research | 2013

Multispectral simultaneous diagnosis of Saturn's aurorae throughout a planetary rotation

L. Lamy; R. Prangé; Wayne R. Pryor; Jacques Gustin; S. V. Badman; Henrik Melin; Tom Stallard; D. G. Mitchell; Pontus C Son Brandt

From 27 to 28 January 2009, the Cassini spacecraft remotely acquired combined observations of Saturns southern aurorae at radio, ultraviolet, and infrared wavelengths, while monitoring ion injections in the middle magnetosphere from energetic neutral atoms. Simultaneous measurements included the sampling of a full planetary rotation, a relevant timescale to investigate auroral emissions driven by processes internal to the magnetosphere. In addition, this interval coincidentally matched a powerful substorm-like event in the magnetotail, which induced an overall dawnside intensification of the magnetospheric and auroral activity. We comparatively analyze this unique set of measurements to reach a comprehensive view of kronian auroral processes over the investigated timescale. We identify three source regions for the atmospheric aurorae, including a main oval associated with the bulk of Saturn Kilometric Radiation (SKR), together with polar and equatorward emissions. These observations reveal the coexistence of corotational and subcorototational dynamics of emissions associated with the main auroral oval. Precisely, we show that the atmospheric main oval hosts short-lived subcorotating isolated features together with a bright, longitudinally extended, corotating region locked at the southern SKR phase. We assign the substorm-like event to a regular, internally driven, nightside ion injection possibly triggered by a plasmoid ejection. We also investigate the total auroral energy budget, from the power input to the atmosphere, characterized by precipitating electrons up to 20 keV, to its dissipation through the various radiating processes. Finally, through simulations, we confirm the search-light nature of the SKR rotational modulation and we show that SKR arcs relate to isolated auroral spots. We characterize which radio sources are visible from the spacecraft and we estimate the fraction of visible southern power to a few percent. The resulting findings are discussed in the frame of pending questions as the persistence of a corotating field-aligned current system within a subcorotating magnetospheric cold plasma, the occurrence of plasmoid activity, and the comparison of auroral fluxes radiated at different wavelengths.


Geophysical Research Letters | 1997

Galileo ultraviolet spectrometer observations of atomic hydrogen in the atmosphere of Ganymede

Charles A. Barth; C. W. Hord; A. I. F. Stewart; Wayne R. Pryor; K. E. Simmons; William E. McClintock; Joseph M. Ajello; K. L. Naviaux; J. J. Aiello

Atomic hydrogen Lyman alpha radiation (121.6 nm) has been measured in emission from the atmosphere of Ganymede with the Galileo ultraviolet spectrometer. An exospheric model with the following parameters has been fit to the observational data: atomic hydrogen density directly above the surface (radius 2634 km) equal to 1.5 × 104 atoms cm−3 scale height 2634 km, exospheric temperature 450 K. A model calculation of the photodissociation of water vapor from surface ice at 146 K is used to obtain the photodissociation rate necessary to supply the hydrogen atoms that are escaping from the exosphere of Ganymede. The calculated escape flux of atomic hydrogen is 7 × 108 atoms/cm² sec. Two alternate but speculative sources of the atomic hydrogen escaping from Ganymede are photodesorption of water ice by ultraviolet photons in the wavelength range 120.5–186.0 nm and sputtering of water ice by Jupiters magnetospheric ion plasma.


Nature | 2011

The auroral footprint of Enceladus on Saturn

Wayne R. Pryor; Abigail Rymer; Donald G. Mitchell; Thomas W. Hill; David T. Young; Joachim Saur; Geraint H. Jones; Sven Jacobsen; Stan W. H. Cowley; B. H. Mauk; A. J. Coates; Jacques Gustin; Denis Grodent; Jean-Claude Gérard; L. Lamy; J. D. Nichols; Stamatios M. Krimigis; Larry W. Esposito; Michele K. Dougherty; A. Jouchoux; A. Ian F. Stewart; William E. McClintock; Gregory M. Holsclaw; Joseph M. Ajello; Joshua E. Colwell; Amanda R. Hendrix; Frank Judson Crary; John T. Clarke; Xiaoyan Zhou

Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io–Jupiter coupling, for example, create an auroral footprint in Jupiter’s ionosphere. Auroral ultraviolet emission associated with Enceladus–Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io’s footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon’s footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters—and as such is probably indicative of variable plume activity.


Applied Optics | 1988

Simple ultraviolet calibration source with reference spectra and its use with the Galileo orbiter ultraviolet spectrometer

Joseph M. Ajello; Donald E. Shemansky; Brian Franklin; J. Watkins; S. Srivastava; Geoffrey K. James; W. T. Simms; C. W. Hord; Wayne R. Pryor; William E. McClintock; V. Argabright; D. Hall

We have developed a simple compact electron impact laboratory source of UV radiation whose relative intensity as a function of wavelength has an accuracy traceable to the fundamental physical constants (transitions probabilities and excitation cross sections) for an atomic or molecular system. Using this laboratory source, calibrated optically thin vacuum ultraviolet (VUV) spectra have been obtained and synthetic spectral models developed for important molecular band systems of H(2) and N(2) and the n(1)P(0) Itydberg series of He. The model spectrum from H(2) represents an extension of the molecular branching ratio technique to include spectral line intensities from more than one electronic upper state. The accuracy of the model fit to the VUV spectra of H(2) and N(2) is sufficient to predict the relative spectral intensity of the electron impact source and to serve as a primary calibration standard for VUV instrumentation in the 80-230-nm wavelength range. The model is applicable to VUV instrumentation with full width at half-maximum >/= 0.4 nm. The present accuracy is 10% in the far ultraviolet (120-230 nm), 10% in the extreme ultraviolet (EUV) (90-120 nm), and 20% in the EUV (80-90 nm). The n(1)P(0) Rydberg series of He has been modeled to 10% accuracy and can be considered a primary calibration standard in the EUV (52.2-58.4 nm). A calibrated optically thin spectrum of Ar has been obtained at 0.5-nm resolution and 200-eV electron impact energy to 35% accuracy without benefit of models over the EUV spectral range of 50-95 nm. The Ar spectrum expands the ultimate range of the VUV relative calibration using this source with the four gases, He, Ar, H(2), and N(2), to 50-230 nm. The calibration of the Galileo orbiter ultraviolet spectrometer for the upcoming Jupiter mission has been demonstrated and compared to results from other methods.


Geophysical Research Letters | 2009

Saturn's equinoctial auroras

J. D. Nichols; S. V. Badman; E. J. Bunce; John Clarke; S. W. H. Cowley; Frank Judson Crary; M. K. Dougherty; Jean-Claude Gérard; Denis Grodent; Kenneth Calvin Hansen; W. S. Kurth; D. G. Mitchell; Wayne R. Pryor; Tom Stallard; D. L. Talboys; S. Wannawichian

Received 23 October 2009; accepted 24 November 2009; published 23 December 2009. [1] We present the first images of Saturn’s conjugate equinoctial auroras, obtained in early 2009 using the Hubble Space Telescope. We show that the radius of the northern auroral oval is � 1.5 smaller than the southern, indicating that Saturn’s polar ionospheric magnetic field, measured for the first time in the ionosphere, is � 17% larger in the north than the south. Despite this, the total emitted UV power is on average � 17% larger in the north than the south, suggesting that field-aligned currents (FACs) are responsible for the emission. Finally, we show that individual auroral features can exhibit distinct hemispheric asymmetries. These observations will provide important context for Cassini observations as Saturn moves from southern to northern summer. Citation: Nichols, J. D., et al. (2009), Saturn’s equinoctial auroras, Geophys. Res. Lett., 36, L24102, doi:10.1029/2009GL041491.


Geophysical Research Letters | 2007

Titan airglow spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV analysis

Joseph M. Ajello; Michael H. Stevens; Ian Stewart; Kristopher Larsen; Larry W. Esposito; Josh Colwell; William E. McClintock; Greg Holsclaw; Jacques Gustin; Wayne R. Pryor

u ! X 1 P g ), while the FUV spectrum consists of one (a 1 !g ! X 1 P g ). Both the EUVand FUV spectra contain many N I and N II multiplets that are produced primarily by photodissociative ionization. Spectral intensities of the N2 c4 0 1 P u (v 0 =0 )! X 1 P g (v 00 = 0-2) progression from 950-1010 A u are resolved for the first time. The UVIS observations reveal that the c4 1 P u (0) ! X 1 P (3) Stevens et al. (1994) developed a c4 (0, v 00 ) multiple scattering model for the terrestrial atmosphere and showed that c4 0 (0, 0) should be weak or undetectable near peak photoelectron excitation and that c4 0 (0, 1) should dominate over c4 (0, 0). This result was also inferred at Titan by Stevens (2001), who argued that c4 0 (0, 0) was misidentified at Titan and that two prominent N I multiplets produced primarily by photodissociative ionization (PDI) of N2 were present instead. This meant that the Titan EUV dayglow could be excited exclusively by the Sun. The key EUV emissions that could not be conclusively identified by UVS because of its low spectral resolution (30 A u ) can now be determined by UVIS with its higher spectral resolution (5.6 A u ). (4) Here we present for the first time UVIS EUV and FUV airglow spectra from Titan. We discuss the implica- tions of the spectra to the excitation sources on Titan using models of the EUV airglow. A subsequent paper will provide a model of the FUV airglow.

Collaboration


Dive into the Wayne R. Pryor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph M. Ajello

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William E. McClintock

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Amanda R. Hendrix

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt D. Retherford

Southwest Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge