Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne Reeve is active.

Publication


Featured researches published by Wayne Reeve.


Microbiology | 1999

Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria

Wayne Reeve; Ravi Tiwari; Penelope S. Worsley; M. J. Dilworth; A. R. Glenn; John Howieson

Cassettes have been developed that contain an antibiotic resistance marker with and without a promoterless gusA reporter gene. The nptII (encoding kanamycin resistance) or aacCI (encoding gentamicin resistance) genes were equipped with the tac promoter (Ptac) and the trpA terminator (TtrpA) and then cloned between NotI sites to construct the CAS-Nm (Ptac-nptII-TtrpA) and CAS-Gm (Ptac/PaacCI-aacCI-TtrpA) cassettes. The markers were also cloned downstream to a modified promoterless Escherichia coli gusA gene (containing TGA stop codons in all three reading frames prior to its RBS and start codon) to construct the CAS-GNm (gusA-Ptac-nptII-TtrpA) or CAS-GGm (gusA-Ptac/PaacCI-aacCI-TtrpA) cassettes. Cassettes containing the promoterless gusA create type I fusions with a target DNA sequence to detect transcriptional activity. The promoterless gusA gene has also been cloned into a broad-host-range IncP1 plasmid. This construct will enable transcriptional activity to be monitored in different genetic backgrounds. Each cassette was cloned as a NotI fragment into the NotI site of a pUT derivative to construct four minitransposons. The mTn5-Nm (containing Ptac-nptII-TtrpA) and mTn5-Gm (containing Ptac/PaacCI-aacCI-TtrpA) minitransposons have been constructed specifically for insertional inactivation studies. The minitransposons mTn5-GNm (containing gusA-Ptac-nptII-TtrpA) and mTn5-GGm (containing gusA-Ptac/PaacCI-aacCI-TtrpA) can be used for transcription signal localization or insertional inactivation. The TAC-31R and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-Nm, CAS-Gm, mTn5-Nm and mTn5-Gm. The WIL3 and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-GNm, CAS-GGm, mTn5-GNm and mTn5-GGm. The specific application of these constructs to generate acid- or nodule-inducible fusions is presented. The new constructs provide useful tools for insertional mutagenesis, transcriptional signal localization and gene regulation studies in the root nodule bacteria and possibly other gram-negative bacteria.


International Journal of Systematic and Evolutionary Microbiology | 2012

Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts.

Julie Ardley; Parker; S. De Meyer; Robert D. Trengove; G.W. O'Hara; Wayne Reeve; R.J. Yates; M. J. Dilworth; Anne Willems; John Howieson

Strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from nitrogen-fixing nodules of the native legumes Listia angolensis (from Zambia) and Lupinus texensis (from Texas, USA). Phylogenetic analysis of the 16S rRNA gene showed that the novel strains belong to the genus Microvirga, with ≥ 96.1% sequence similarity with type strains of this genus. The closest relative of the representative strains Lut6(T) and WSM3557(T) was Microvirga flocculans TFB(T), with 97.6-98.0% similarity, while WSM3693(T) was most closely related to Microvirga aerilata 5420S-16(T), with 98.8% similarity. Analysis of the concatenated sequences of four housekeeping gene loci (dnaK, gyrB, recA and rpoB) and cellular fatty acid profiles confirmed the placement of Lut6(T), WSM3557(T) and WSM3693(T) within the genus Microvirga. DNA-DNA relatedness values, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of Lut6(T), WSM3557(T) and WSM3693(T) from each other and from other Microvirga species with validly published names. The nodA sequence of Lut6(T) was placed in a clade that contained strains of Rhizobium, Mesorhizobium and Sinorhizobium, while the 100% identical nodA sequences of WSM3557(T) and WSM3693(T) clustered with Bradyrhizobium, Burkholderia and Methylobacterium strains. Concatenated sequences for nifD and nifH show that the sequences of Lut6(T), WSM3557(T) and WSM3693(T) were most closely related to that of Rhizobium etli CFN42(T) nifDH. On the basis of genotypic, phenotypic and DNA relatedness data, three novel species of Microvirga are proposed: Microvirga lupini sp. nov. (type strain Lut6(T) =LMG 26460(T) =HAMBI 3236(T)), Microvirga lotononidis sp. nov. (type strain WSM3557(T) =LMG 26455(T) =HAMBI 3237(T)) and Microvirga zambiensis sp. nov. (type strain WSM3693(T) =LMG 26454(T) =HAMBI 3238(T)).


Microbiology | 1996

Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system

Ravi Tiwari; Wayne Reeve; M. J. Dilworth; A. R. Glenn

An acid-sensitive mutant, TG5-46, derived from Rhizobium meliloti WSM419 by Tn5 mutagenesis, fails to grow below pH 6.0 whereas the parent strain grows at pH 5.7. The DNA sequence of a 2.2 kb rhizobial DNA region flanking Tn5 in TG5-46 contains two open reading frames, ORF1 (designated actS) and ORF2 (designated actR), having high similarity to the sensor-regulator pairs of the two-component systems involved in signal transduction in prokaryotes. Insertion of an omega interposon into actS in R. meliloti WSM419 resulted in an acid-sensitive phenotype. A DNA fragment from the wild-type complemented the acid-sensitive phenotype of RT295 (ActS-) and TG5-46 (ActR-), while fragments containing only actR or actS complemented TG5-46 and RT295, respectively. The presence of multiple copies of actR complemented not only TG5-46 but also RT295. Cloning DNA upstream from actR and actS into a broad-host-range lacZ expression vector and measuring beta-galactosidase activities showed that both genes are constitutively expressed regardless of the external pH. Genomic DNA from all strains of R. meliloti, but no other bacteria tested, hybridized with an actRS probe at high stringency. These data implicate a two-component sensor-regulator protein pair in acid tolerance in R. meliloti and suggest their involvement in pH sensing and/or response by these bacteria.


Standards in Genomic Sciences | 2010

Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419

Wayne Reeve; Patrick Chain; Graham O’Hara; Julie Ardley; Kemanthi Nandesena; Lambert Bräu; Ravi Tiwari; Stephanie Malfatti; Hajnalka Kiss; Alla Lapidus; Alex Copeland; Matt Nolan; Miriam Land; Loren Hauser; Yun-Juan Chang; Natalia Ivanova; Konstantinos Mavromatis; Victor Markowitz; Nikos C. Kyrpides; Margaret Gollagher; R.J. Yates; M. J. Dilworth; John Howieson

Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome sequence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a feature unique to this medic microsymbiont.


Molecular Microbiology | 2002

ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity

Wayne Reeve; Ravi Tiwari; Neetin B. Kale; M. J. Dilworth; A. R. Glenn

Two ‘calcium‐irreparable’ acid‐sensitive mutants were identified after mutagenizing Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti with Tn5. Each mutant contains a single copy of the transposon which, inserted within the actP gene, prevents expression of a P‐type ATPase that belongs to the CPx heavy metal‐transporting subfamily. Here, we show that both actP‐knockout mutants show sensitivity to copper; omission of this heavy metal from low pH‐buffered media restores acid tolerance to these strains. Furthermore, complementation of the mutant phenotype requires only the actP gene. An actP–gusA fusion in R. leguminosarum was transcriptionally regulated by copper in a pH‐dependent manner. Downstream to actP in both organisms is the hmrR gene that encodes a heavy metal‐responsive regulator (HmrR) that belongs to the merR class of regulatory genes. Insertional inactivation of hmrR abolished transcriptional activation of actP by copper ions and increased the basal level of its expression in their absence. These observations suggest that HmrR can regulate actP transcription positively and negatively. We show that copper homeostasis is an essential mechanism for the acid tolerance of these root nodule bacteria since it prevents this heavy metal from becoming overtly toxic in acidic conditions.


Plant and Soil | 2005

The symbiotic requirements of different medicago spp. Suggest the evolution of sinorhizobium meliloti and S. medicae with hosts differentially adapted to soil pH

Giovanni Garau; Wayne Reeve; Lambert Bräu; Pietrino Deiana; R.J. Yates; Donny Lawrence James; Ravi Tiwari; G.W. O'Hara; John Howieson

Nitrogen fixing rhizobia associated with the Medicago L. genus belong to two closely related species Sinorhizobium medicae and S. meliloti. To investigate the symbiotic requirements of different Medicago species for the two microsymbionts, 39 bacterial isolates from nodules of eleven Medicago species growing in their natural habitats in the Mediterranean basin plus six historical Australian commercial inocula were symbiotically characterized with Medicago hosts. The bacterial species allocation was first assigned on the basis of symbiotic proficiency with M. polymorpha. PCR primers specific for 16S rDNA were then designed to distinguish S. medicae and S. meliloti. PCR amplification results confirmed the species allocation acquired in the glasshouse. PCR fingerprints generated from ERIC, BOXA1R and nif-directed RPO1 primers revealed that the Mediterranean strains were genetically heterogenous. Moreover PCR fingerprints with ERIC and BOX primers showed that these repetitive DNA elements were specifically distributed and conserved in S. meliloti and S. medicae, clustering the strains into two divergent groups according to their species. Linking the Sinorhizobium species with the plant species of origin we have found that S. medicae was mostly associated with medics well adapted to moderately acid soils such as M. polymorpha, M. arabica and M. murex whereas S. meliloti was predominantly isolated from plants naturally growing on alkaline or neutral pH soils such as M. littoralis and M. tornata. Moreover in glasshouse experiments the S. medicae strains were able to induce well-developed nodules on M. murex whilst S. meliloti was not infective on this species. This feature provides a very distinguishing characteristic for S. medicae. Results from the symbiotic, genotypic and cultural characterization suggest that S. meliloti and S. medicae have adapted to different Medicago species according to the niches these medics usually occupy in their natural habitats.


Australian Journal of Experimental Agriculture | 2001

Acid tolerance in legume root nodule bacteria and selecting for it

M. J. Dilworth; John Howieson; Wayne Reeve; Ravi Tiwari; A. R. Glenn

Bacteria face a variety of problems in trying to survive and grow in acidic environments. These include maintaining intracellular pH (PHi) in order to protect internal cell components, modifying or abandoning those external structures inevitably exposed to acidity, and resisting stresses whose interaction with pH may be the actual determinant of survival or growth rather than H+ toxicity per se. An important aspect of acid resistance in Gram-negative bacteria (including the root nodule bacteria) is the adaptive acid tolerance response (ATR), whereby cells grown at moderately acid pH are much more resistant to being killed under strongly acidic conditions than are cells grown at neutral pH. Survival during pH shock is also markedly affected by the calcium concentration in the medium. The pH at which commercial legume inoculants are grown and supplied for inoculation into acid soils may therefore be of considerable importance for initial inoculant survival. The mechanisms of resistance to acidity in root nodule bacteria have been investigated via 3 approaches: (i) creation of acid-sensitive mutants from acid-tolerant strains, and identification of the genes involved; (ii) random insertion of reporter genes to create mutants with pH-dependent reporter expression; and (iii) proteomics and identification of proteins regulated in response to acidity. The results of the first approach, directed at genes essential for growth at acid pH, have identified a sensor-regulator gene pair (actS-actR), a copper-transporting ATPase (actP), and another gene involved in lipid metabolism (actA), inactivation of which results in sensitivity to heavy metals. While the ActS-ActR system is undoubtedly required for both acid tolerance and the ATR, it is also involved in global regulation of a wide range of cellular processes. The second approach has allowed identification of a range of acid-responsive genes, which are not themselves critical to growth at low pH. One of these (phrR) is itself a regulator gene induced by a range of stresses including acid pH, but not controlled by the ActS-ActR system. Another, lpiA, responds specifically to acidity (not to other stresses) and may well be an antiporter related to nhaB, which is involved in Na+ transport in other bacteria. The third approach indicates a number of proteins whose concentration changes with a switch from neutral to acidic growth pH; most of these seem to have no homologues in the protein databases, while the blocked N-terminal sequences of others have prevented identification. It has been common experience that strains of root nodule bacteria selected for acid tolerance in the laboratory are not necessarily successful as inoculants in acid soils. In the light of the complex interactive effects on growth and survival of H+, Ca2+ and CU2+ concentrations in our studies, this lack of correlation is no longer surprising. It remains to be seen whether it will be possible to improve the correlation between growth on laboratory media and performance in acid soils by determining which strains show an ATR, and by screening on media with defined ranges of concentration of some of these critical metal ions, perhaps approximating those to be expected in the soils in question.


Microbiology | 1996

An Essential Role for actA in Acid Tolerance of Rhizobium Melilotix

Ravi Tiwari; Wayne Reeve; M. J. Dilworth; A. R. Glenn

The actA gene, which is disrupted by Tn5 in the acid-sensitive mutant of Rhizobium meliloti TG2-6, was cloned and sequenced. It encodes a protein of 541 amino acids with a calculated molecular mass of 57,963 Da and an estimated pl of 9.0. The ActA protein sequence has 30% identity, and much higher similarity (69%), with the CutE protein of Escherichia coli. Like the cutE mutant of E. coli, TG2-6 is sensitive to copper. The reconstructed wild-type actA gene complemented the low pH- and copper-sensitive phenotype of TG2-6. Studies with an actA-lacZ gene fusion showed that actA is constitutively expressed at pH 5.8 and 7.0. The actA gene appears to be chromosomal and is present in all seven strains of R. meliloti tested.


Soil Biology & Biochemistry | 1993

Calcium affects the growth and survival of rhizobium meliloti

Wayne Reeve; Ravi Tiwari; M. J. Dilworth; A. R. Glenn

The interaction of pH and calcium on the growth of acid-tolerant and acid-sensitive strains of Rhizobium meliloti and Tn5-induced acid-sensitive mutants of strain WSM 419 has been studied. The calcium concentration had only a minor effect on growth rate at alkaline and neutral pH, but it significantly influenced the behaviour of WSM 419 at acidic pH. Increasing the calcium concentration markedly stimulated the growth rate and allowed growth to occur at more acidic pH. Calcium affected the growth or survival of all seven strains of R. meliloti tested. Investigation of five Tn5-induced acid-sensitive mutants of WSM 419 indicated that four would grow even at pH 5.5 if high concentrations of calcium were added to the medium; the other would not grow at pH 5.6 or 5.5 even if 50 mM calcium was added to the medium.


Standards in Genomic Sciences | 2010

Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers.

Wayne Reeve; Graham O’Hara; Patrick Chain; Julie Ardley; Lambert Bräu; Kemanthi Nandesena; Ravi Tiwari; Alex Copeland; Matt Nolan; Cliff Han; Thomas Brettin; Miriam Land; Galina Ovchinikova; Natalia Ivanova; Konstantinos Mavromatis; Victor Markowitz; Nikos C. Kyrpides; Vanessa Melino; Matthew D. Denton; R.J. Yates; John Howieson

Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is produced commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a microsymbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924 bp, 660,973 bp, 516,088 bp, 350,312 bp and 294,782 bp.

Collaboration


Dive into the Wayne Reeve's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Woyke

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Victor Markowitz

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amrita Pati

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge