Wayne S. Sossin
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wayne S. Sossin.
Cell | 2007
Mauro Costa-Mattioli; Delphine Gobert; Karine Gamache; Rodney Colina; Claudio Cuello; Wayne S. Sossin; Randal J. Kaufman; Jerry Pelletier; Kobi Rosenblum; K. Krnjević; Jean-Claude Lacaille; Karim Nader; Nahum Sonenberg
The late phase of long-term potentiation (LTP) and memory (LTM) requires new gene expression, but the molecular mechanisms that underlie these processes are not fully understood. Phosphorylation of eIF2alpha inhibits general translation but selectively stimulates translation of ATF4, a repressor of CREB-mediated late-LTP (L-LTP) and LTM. We used a pharmacogenetic bidirectional approach to examine the role of eIF2alpha phosphorylation in synaptic plasticity and behavioral learning. We show that in eIF2alpha(+/S51A) mice, in which eIF2alpha phosphorylation is reduced, the threshold for eliciting L-LTP in hippocampal slices is lowered, and memory is enhanced. In contrast, only early-LTP is evoked by repeated tetanic stimulation and LTM is impaired, when eIF2alpha phosphorylation is increased by injecting into the hippocampus a small molecule, Sal003, which prevents the dephosphorylation of eIF2alpha. These findings highlight the importance of a single phosphorylation site in eIF2alpha as a key regulator of L-LTP and LTM formation.
Nature | 2005
Mauro Costa-Mattioli; Delphine Gobert; Heather P. Harding; Barbara Herdy; Mounia Azzi; Martin A. Bruno; Michael Bidinosti; Cyrinne Ben Mamou; Edwige Marcinkiewicz; Madoka Yoshida; Hiroaki Imataka; A. Claudio Cuello; Nabil G. Seidah; Wayne S. Sossin; Jean-Claude Lacaille; David Ron; Karim Nader; Nahum Sonenberg
Studies on various forms of synaptic plasticity have shown a link between messenger RNA translation, learning and memory. Like memory, synaptic plasticity includes an early phase that depends on modification of pre-existing proteins, and a late phase that requires transcription and synthesis of new proteins. Activation of postsynaptic targets seems to trigger the transcription of plasticity-related genes. The new mRNAs are either translated in the soma or transported to synapses before translation. GCN2, a key protein kinase, regulates the initiation of translation. Here we report a unique feature of hippocampal slices from GCN2-/- mice: in CA1, a single 100-Hz train induces a strong and sustained long-term potentiation (late LTP or L-LTP), which is dependent on transcription and translation. In contrast, stimulation that elicits L-LTP in wild-type slices, such as four 100-Hz trains or forskolin, fails to evoke L-LTP in GCN2-/- slices. This aberrant synaptic plasticity is mirrored in the behaviour of GCN2-/- mice in the Morris water maze: after weak training, their spatial memory is enhanced, but it is impaired after more intense training. Activated GCN2 stimulates mRNA translation of ATF4, an antagonist of cyclic-AMP-response-element-binding protein (CREB). Thus, in the hippocampus of GCN2-/- mice, the expression of ATF4 is reduced and CREB activity is increased. Our study provides genetic, physiological, behavioural and molecular evidence that GCN2 regulates synaptic plasticity, as well as learning and memory, through modulation of the ATF4/CREB pathway.
PLOS ONE | 2012
Adam Piha-Gossack; Wayne S. Sossin; Dieter P. Reinhardt
Fibrillins constitute the major backbone of multifunctional microfibrils in elastic and non-elastic extracellular matrices, and are known to interact with several binding partners including tropoelastin and integrins. Here, we study the evolution of fibrillin proteins. Following sequence collection from 39 organisms representative of the major evolutionary groups, molecular evolutionary genetics and phylogeny inference software were used to generate a series of evolutionary trees using distance-based and maximum likelihood methods. The resulting trees support the concept of gene duplication as a means of generating the three vertebrate fibrillins. Beginning with a single fibrillin sequence found in invertebrates and jawless fish, a gene duplication event, which coincides with the appearance of elastin, led to the creation of two genes. One of the genes significantly evolved to become the gene for present-day fibrillin-1, while the other underwent evolutionary changes, including a second duplication, to produce present-day fibrillin-2 and fibrillin-3. Detailed analysis of several sequences and domains within the fibrillins reveals distinct similarities and differences across various species. The RGD integrin-binding site in TB4 of all fibrillins is conserved in cephalochordates and vertebrates, while the integrin-binding site within cbEGF18 of fibrillin-3 is a recent evolutionary change. The proline-rich domain in fibrillin-1, glycine-rich domain in fibrillin-2 and proline-/glycine-rich domain in fibrillin-3 are found in all analyzed tetrapod species, whereas it is completely replaced with an EGF-like domain in cnidarians, arthropods, molluscs and urochordates. All collected sequences contain the first 9-cysteine hybrid domain, and the second 8-cysteine hybrid domain with exception of arthropods containing an atypical 10-cysteine hybrid domain 2. Furin cleavage sites within the N- and C-terminal unique domains were found for all analyzed fibrillin sequences, indicating an essential role for processing of the fibrillin pro-proteins. The four cysteines in the unique N-terminus and the two cysteines in the unique C-terminus are also highly conserved.
Current Opinion in Neurobiology | 2010
Wayne S. Sossin; Jean-Claude Lacaille
The plasticity of the nervous system is due to the ability of neurons to change their properties by altering the function of their proteome. A major mechanism for this is through altering the amount of proteins by regulating their translation. In this review, we focus on recent advances in the elucidation of the mechanisms by which neurons regulate translation during synaptic plasticity. Particular focus will be on the different transduction mechanisms that selectively target distinct elements of the mRNA in the regulation of translation during plasticity.
Molecular Brain | 2011
Geneviève Lebeau; Wayne S. Sossin; Jean-Claude Lacaille
Staufens (Stau) are RNA-binding proteins involved in mRNA transport, localization, decay and translational control. The Staufen 1 (Stau1) isoform was recently identified as necessary for the protein synthesis-dependent late phase long-term potentiation (late-LTP) and for the maintenance of mature dendritic spines and synaptic activity in hippocampal CA1 pyramidal cells, strongly suggesting a role of mRNA regulation by Stau1 in these processes. However, the causal relationship between these impairments in synaptic function (spine shape and basal synaptic activity) and plasticity (late-LTP) remains unclear. Here, we determine that the effects of Stau1 knockdown on spine shape and size are mimicked by blocking NMDA receptors (or elevating extracellular Mg2+) and that Stau1 knockdown in the presence of NMDA receptor blockade (or high Mg2+) has no further effect on spine shape and size. Moreover, the effect of Stau1 knockdown on late-LTP cannot be explained by these effects, since when tested in normal medium, slice cultures that had been treated with high Mg2+ (to impair NMDA receptor function) in combination with a control siRNA still exhibited late-LTP, while siRNA to Stau1 was still effective in blocking late-LTP. Our results indicate that Stau1 involvement in spine morphogenesis is dependent on ongoing NMDA receptor-mediated plasticity, but its effects on late-LTP are independent of these changes. These findings clarify the role of Stau1-dependent mRNA regulation in physiological and morphological changes underlying long-term synaptic plasticity in pyramidal cells.
Journal of Neurochemistry | 2017
Patrick K. McCamphill; Larissa Ferguson; Wayne S. Sossin
Mechanistic target of rapamycin complex 1 (mTORC1)‐dependent protein synthesis is required for many forms of synaptic plasticity and memory, but the downstream pathways important for synaptic plasticity are poorly understood. Long‐term facilitation (LTF) in Aplysia is a form of synaptic plasticity that is closely linked to behavioral memory and an attractive model system for examining the important downstream targets for mTORC1 in regulating synaptic plasticity. Although mTORC1‐regulated protein synthesis has been strongly linked to translation initiation, translation elongation is also regulated by mTORC1 and LTF leads to an mTORC1‐dependent decrease in eukaryotic elongation factor 2 (eEF2) phosphorylation. The purpose of this study is to test the hypothesis that the decrease in eEF2 phosphorylation is required for mTORC1‐dependent translation and plasticity. We show that the LTF‐induced decrease in eEF2 phosphorylation is blocked by expression of an eEF2 kinase (eEF2K) modified to be resistant to mTORC1 regulation. We found that expression of this modified kinase blocked LTF. LTF requires local protein synthesis of the neuropeptide sensorin and importantly, local sensorin synthesis can be measured using a dendra fluorescent protein containing the 5′ and 3′ untranslated regions (UTRs) of sensorin. Using this construct, we show that blocking eEF2 dephosphorylation also blocks the increase in local sensorin synthesis. These results identify decreases in eEF2 phosphorylation as a critical downstream effector of mTOR required for long‐term plasticity and identify an important translational target regulated by decreases in eEF2 phosphorylation.
Handbook of Behavioral Neuroscience | 2013
Margaret Hastings; Carole A. Farah; Wayne S. Sossin
The nervous system of Aplysia californica has three isoforms of protein kinase C (PKC): the conventional PKC Apl I, the novel PKC Apl II, and the atypical PKC Apl III. Each isoform has distinct requirements for activation and distinct downstream roles in synaptic plasticity. PKCs can be cleaved by calpains into constitutively active forms, called protein kinase Ms (PKMs). Multiple forms of plasticity in Aplysia are mediated by PKMs, and these may be due to cleavage of distinct isoforms of PKC. PKCs also interact in complex ways with other second messenger pathways. The diversity of PKC isoforms allows for this family of kinases to play important roles in decoding extracellular stimuli into the formation of distinct molecular memory traces.
Methods of Molecular Biology | 2003
Wayne S. Sossin
Archive | 2015
Philippe Pierre; Jerry Pelletier; Eric Klann; Charles A. Hoeffer; Emanuela Santini; Tao Ma; Elizabeth C. Arnold; Jean-Claude Lacaille; Wayne S. Sossin; Tyson E. Graber; Sarah Hébert-Seropian; Arkady Khoutorsky; Alexandre David; Gerhard Wagner; Ricard Rodriguez-Mias; Revital Yefidoff-Freedman; Bertal H. Aktas; Michael Chorev; Rafael E. Luna; Evripidis Gavathiotis; Poornachandran Mahalingam; Haribabu Arthanari; Evangelos Papadopoulos; Simon Jenni; Eihab Kabha; Khuloud Takrouri; Tingfang Yi
Archive | 2013
Daniel B. Weatherill; Tyler W. Dunn; Patrick K. McCamphill; Wayne S. Sossin