Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weerachat Sompong is active.

Publication


Featured researches published by Weerachat Sompong.


International Journal of Molecular Sciences | 2012

Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

Sirichai Adisakwattana; Weerachat Sompong; Aramsri Meeprom; Sathaporn Ngamukote; Sirintorn Yibchok-anun

Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of Nɛ-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.


BMC Complementary and Alternative Medicine | 2012

In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase

Sirichai Adisakwattana; Thanyachanok Ruengsamran; Patcharaporn Kampa; Weerachat Sompong

BackgroundPlant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. In this study, five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. The combined inhibitory effects of plant-based foods were also evaluated. Preliminary phytochemical analysis of plant-based foods was performed in order to determine the total phenolic and flavonoid content.MethodsThe dried plants of Hibiscus sabdariffa (Roselle), Chrysanthemum indicum (chrysanthemum), Morus alba (mulberry), Aegle marmelos (bael), and Clitoria ternatea (butterfly pea) were extracted with distilled water and dried using spray drying process. The dried extracts were determined for the total phenolic and flavonoid content by using Folin-Ciocateu’s reagent and AlCl3 assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively.ResultsThe phytochemical analysis revealed that the total phenolic content of the dried extracts were in the range of 230.3-460.0 mg gallic acid equivalent/g dried extract. The dried extracts contained flavonoid in the range of 50.3-114.8 mg quercetin equivalent/g dried extract. It was noted that the IC50 values of chrysanthemum, mulberry and butterfly pea extracts were 4.24±0.12 mg/ml, 0.59±0.06 mg/ml, and 3.15±0.19 mg/ml, respectively. In addition, the IC50 values of chrysanthemum, mulberry and butterfly pea extracts against intestinal sucrase were 3.85±0.41 mg/ml, 0.94±0.11 mg/ml, and 4.41±0.15 mg/ml, respectively. Furthermore, the IC50 values of roselle and butterfly pea extracts against pancreatic α-amylase occurred at concentration of 3.52±0.15 mg/ml and 4.05±0.32 mg/ml, respectively. Combining roselle, chrysanthemum, and butterfly pea extracts with mulberry extract showed additive interaction on intestinal maltase inhibition. The results also demonstrated that the combination of chrysanthemum, mulberry, or bael extracts together with roselle extract produced synergistic inhibition, whereas roselle extract showed additive inhibition when combined with butterfly pea extract against pancreatic α-amylase.ConclusionsThe present study presents data from five plant-based foods evaluating the intestinal α-glucosidase and pancreatic α-amylase inhibitory activities and their additive and synergistic interactions. These results could be useful for developing functional foods by combination of plant-based foods for treatment and prevention of diabetes mellitus.


British Journal of Nutrition | 2011

Grape seed extract supplementation prevents high-fructose diet-induced insulin resistance in rats by improving insulin and adiponectin signalling pathways.

Aramsri Meeprom; Weerachat Sompong; Wannaporn Suwannaphet; Sirintorn Yibchok-anun; Sirichai Adisakwattana

Recent evidence strongly supports the contention that grape seed extract (GSE) improves hyperglycaemia and hyperinsulinaemia in high-fructose-fed rats. To explore the underlying molecular mechanisms of action, we examined the effects of GSE on the expression of muscle proteins related to the insulin signalling pathway and of mRNA for genes involved in the adiponectin signalling pathway. Compared with rats fed on a normal diet, high-fructose-fed rats developed pathological changes, including insulin resistance, hyperinsulinaemia, hypertriacylglycerolaemia, a low level of plasma adiponectin and a high level of plasma fructosamine. These disorders were effectively attenuated in high-fructose-fed rats supplemented with GSE. A high-fructose diet causes insulin resistance by significantly reducing the protein expression of insulin receptor, insulin receptor substrate-1, Akt and GLUT4, and the mRNA expression of adiponectin, adiponectin receptor R1 (AdipoR1) and AMP-activated protein kinase (AMPK)-α in the skeletal muscle. Supplementation of GSE enhanced the expression of insulin signalling pathway-related proteins, including Akt and GLUT4. GSE also increased the mRNA expression of adiponectin, AdipoR1 and AMPK-α. In addition, GSE increased the mRNA levels of glycogen synthase and suppressed the mRNA expression of glycogen synthase kinase-3-α, causing an increase in glycogen accumulation in the skeletal muscle. These results suggest that GSE ameliorates the defective insulin and adiponectin signalling pathways in the skeletal muscle, resulting in improved insulin resistance in fructose-fed rats.


Molecules | 2013

Isoferulic Acid, a New Anti-Glycation Agent, Inhibits Fructose- and Glucose-Mediated Protein Glycation in Vitro

Aramsri Meeprom; Weerachat Sompong; Catherine B. Chan; Sirichai Adisakwattana

The inhibitory activity of isoferulic acid (IFA) on fructose- and glucose-mediated protein glycation and oxidation of bovine serum albumin (BSA) was investigated. Our data showed that IFA (1.25–5 mM) inhibited the formation of fluorescent advanced glycation end products (AGEs) and non-fluorescent AGE [Nε-(carboxymethyl) lysine: CML], as well as the level of fructosamine. IFA also prevented protein oxidation of BSA indicated by decreasing protein carbonyl formation and protein thiol modification. Furthermore, IFA suppressed the formation of β-cross amyloid structures of BSA. Therefore, IFA might be a new promising anti-glycation agent for the prevention of diabetic complications via inhibition of AGEs formation and oxidation-dependent protein damage.


Molecules | 2013

A Comparative Study of Ferulic Acid on Different Monosaccharide-Mediated Protein Glycation and Oxidative Damage in Bovine Serum Albumin

Weerachat Sompong; Aramsri Meeprom; Henrique Cheng; Sirichai Adisakwattana

Three dietary monosaccharides, (glucose, fructose, and ribose), have different rates of protein glycation that accelerates the production of advanced glycation end-products (AGEs). The present work was conducted to investigate the effect of ferulic acid (FA) on the three monosaccharide-mediated protein glycations and oxidation of BSA. Comparing the percentage reduction, FA (1–5 mM) reduced the level of fluorescence AGEs (F-AGEs) and Nε-(carboxymethyl) lysine (Nε-CML) in glucose-glycated BSA (F-AGEs = 12.61%–36.49%; Nε-CML = 33.61%–66.51%), fructose-glycated BSA (F-AGEs = 25.28%–56.42%; Nε-CML = 40.21%–62.91%), and ribose-glycated BSA (F-AGEs = 25.63%–51.18%; Nε-CML = 26.64%–64.08%). In addition, the percentages of FA reduction of fructosamine (Frc) and amyloid cross β-structure (Amy) were Frc = 20.45%–43.81%; Amy = 17.84%–34.54% in glucose-glycated BSA, Frc = 25.17%–36.92%; Amy = 27.25%–39.51% in fructose-glycated BSA, and Frc = 17.34%–29.71%; Amy = 8.26%–59.92% in ribose-glycated BSA. FA also induced a reduction in protein carbonyl content (PC) and loss of protein thiol groups (TO) in glucose-glycated BSA (PC = 37.78%–56.03%; TO = 6.75%–13.41%), fructose-glycated BSA (PC = 36.72%–52.74%; TO = 6.18%–20.08%), and ribose-glycated BSA (PC = 25.58%–33.46%; TO = 20.50%–39.07%). Interestingly, the decrease in fluorescence AGEs by FA correlated with the level of Nε-CML, fructosamine, amyloid cross β-structure, and protein carbonyl content. Therefore, FA could potentially be used to inhibit protein glycation and oxidative damage caused by monosaccharides, suggesting that it might prevent AGEs-mediated pathologies during diabetic complications.


PLOS ONE | 2015

Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes

Weerachat Sompong; Henrique Cheng; Sirichai Adisakwattana

Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM) significantly reduced the levels of glycated hemoglobin (HbA1c) whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM) prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes.


Biomedicine & Pharmacotherapy | 2018

Isoferulic acid attenuates methylglyoxal-induced apoptosis in INS-1 rat pancreatic β-cell through mitochondrial survival pathways and increasing glyoxalase-1 activity

Aramsri Meeprom; Catherine B. Chan; Weerachat Sompong; Sirichai Adisakwattana

Methylglyoxal (MG) is a reactive precursor to advanced glycation end-products (AGEs), which exert deleterious effects on cells and tissues. MG also causes pancreatic β-cell dysfunction and apoptosis. Isoferulic acid (IFA), a naturally occurring cinnamic acid derivative, is considered to be an antiglycating agent. However, the effect of IFA on MG-induced pancreatic β-cell dysfunction remains unknown. The objective of this study was to determine the protective effect of IFA against MG-induced mitochrondrial dysfunction and apoptosis in INS-1 pancreatic β-cells. The results showed that pretreatment of INS-1 cells with 100 μM IFA for 48 h prevented MG-induced decrease in cell viability and impairment of glucose-stimulated insulin secretion (GSIS). In addition, 100 μM IFA pretreatment also decreased MG-induced generation of reactive oxygen species (ROS) and upregulation of mitochondrial uncoupling protein 2 (Ucp2) mRNA expression. Furthermore, IFA pretreatment reduced MG-induced increase in caspase-3 activity, suggesting a reduction of apoptotic cell death. IFA (50-100 μM) itself markedly increased the activity of glyoxalase 1 (GLO1), a major enzyme for the detoxification of MG. The results showed that 100 μM IFA protected MG-induced loss of GLO1 activity in INS-1 cells. These findings suggest that IFA pretreatment attentuates MG-induced dysfunction and apoptosis in INS-1 pancreatic β-cells through mitochondrial survival pathway and increasing GLO1 activity.


BMC Complementary and Alternative Medicine | 2015

Isoferulic acid prevents methylglyoxal-induced protein glycation and DNA damage by free radical scavenging activity

Aramsri Meeprom; Weerachat Sompong; Tanyawan Suantawee; Thavaree Thilavech; Catherine B. Chan; Sirichai Adisakwattana


Journal of Physiology and Biochemistry | 2017

Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells.

Weerachat Sompong; Henrique Cheng; Sirichai Adisakwattana


BMC Complementary and Alternative Medicine | 2015

Inhibitory effect of herbal medicines and their trapping abilities against methylglyoxal-derived advanced glycation end-products.

Weerachat Sompong; Sirichai Adisakwattana

Collaboration


Dive into the Weerachat Sompong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrique Cheng

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge