Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weerapong Thanapongtharm is active.

Publication


Featured researches published by Weerapong Thanapongtharm.


Veterinary Research | 2010

Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model.

Mathilde Paul; Saraya Tavornpanich; David Abrial; Patrick Gasqui; Myriam Charras-Garrido; Weerapong Thanapongtharm; Xiangming Xiao; Marius Gilbert; François Roger; Christian Ducrot

Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the “second wave” of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained.


PLOS ONE | 2015

Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs

Marius Gilbert; Giulia Conchedda; Thomas P. Van Boeckel; Giuseppina Cinardi; Catherine Linard; Gaëlle Nicolas; Weerapong Thanapongtharm; Laura D'Aietti; William Wint; Scott H. Newman; Timothy P. Robinson

The rapid transformation of the livestock sector in recent decades brought concerns on its impact on greenhouse gas emissions, disruptions to nitrogen and phosphorous cycles and on land use change, particularly deforestation for production of feed crops. Animal and human health are increasingly interlinked through emerging infectious diseases, zoonoses, and antimicrobial resistance. In many developing countries, the rapidity of change has also had social impacts with increased risk of marginalisation of smallholder farmers. However, both the impacts and benefits of livestock farming often differ between extensive (backyard farming mostly for home-consumption) and intensive, commercial production systems (larger herd or flock size, higher investments in inputs, a tendency towards market-orientation). A density of 10,000 chickens per km2 has different environmental, epidemiological and societal implications if these birds are raised by 1,000 individual households or in a single industrial unit. Here, we introduce a novel relationship that links the national proportion of extensively raised animals to the gross domestic product (GDP) per capita (in purchasing power parity). This relationship is modelled and used together with the global distribution of rural population to disaggregate existing 10 km resolution global maps of chicken and pig distributions into extensive and intensive systems. Our results highlight countries and regions where extensive and intensive chicken and pig production systems are most important. We discuss the sources of uncertainties, the modelling assumptions and ways in which this approach could be developed to forecast future trajectories of intensification.


PLOS ONE | 2012

Improving Risk Models for Avian Influenza: The Role of Intensive Poultry Farming and Flooded Land during the 2004 Thailand Epidemic

Thomas P. Van Boeckel; Weerapong Thanapongtharm; Timothy P. Robinson; Chandrashekhar M. Biradar; Xiangming Xiao; Marius Gilbert

Since 1996 when Highly Pathogenic Avian Influenza type H5N1 first emerged in southern China, numerous studies sought risk factors and produced risk maps based on environmental and anthropogenic predictors. However little attention has been paid to the link between the level of intensification of poultry production and the risk of outbreak. This study revised H5N1 risk mapping in Central and Western Thailand during the second wave of the 2004 epidemic. Production structure was quantified using a disaggregation methodology based on the number of poultry per holding. Population densities of extensively- and intensively-raised ducks and chickens were derived both at the sub-district and at the village levels. LandSat images were used to derive another previously neglected potential predictor of HPAI H5N1 risk: the proportion of water in the landscape resulting from floods. We used Monte Carlo simulation of Boosted Regression Trees models of predictor variables to characterize the risk of HPAI H5N1. Maps of mean risk and uncertainty were derived both at the sub-district and the village levels. The overall accuracy of Boosted Regression Trees models was comparable to that of logistic regression approaches. The proportion of area flooded made the highest contribution to predicting the risk of outbreak, followed by the densities of intensively-raised ducks, extensively-raised ducks and human population. Our results showed that as little as 15% of flooded land in villages is sufficient to reach the maximum level of risk associated with this variable. The spatial pattern of predicted risk is similar to previous work: areas at risk are mainly located along the flood plain of the Chao Phraya river and to the south-east of Bangkok. Using high-resolution village-level poultry census data, rather than sub-district data, the spatial accuracy of predictions was enhanced to highlight local variations in risk. Such maps provide useful information to guide intervention.


PLOS ONE | 2014

Agro-environmental determinants of avian influenza circulation: a multisite study in Thailand, Vietnam and Madagascar.

Mathilde Paul; Marius Gilbert; Stéphanie Desvaux; Andriamanivo Hr; Marie-Isabelle Peyre; Khong Nv; Weerapong Thanapongtharm; Chevalier

Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lower-Northern Thailand, where H5N1 circulated in 2004–2005, (2) the Red River Delta in Vietnam, where H5N1 is circulating widely, (3) the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4) the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced.


BMC Veterinary Research | 2015

Spatial characterization of colonies of the flying fox bat, a carrier of Nipah Virus in Thailand

Weerapong Thanapongtharm; Catherine Linard; Witthawat Wiriyarat; Pornpiroon Chinsorn; Budsabong Kanchanasaka; Xiangming Xiao; Chandrashekhar Biradar; Robert G. Wallace; Marius Gilbert

BackgroundA major reservoir of Nipah virus is believed to be the flying fox genus Pteropus, a fruit bat distributed across many of the world’s tropical and sub-tropical areas. The emergence of the virus and its zoonotic transmission to livestock and humans have been linked to losses in the bat’s habitat. Nipah has been identified in a number of indigenous flying fox populations in Thailand. While no evidence of infection in domestic pigs or people has been found to date, pig farming is an active agricultural sector in Thailand and therefore could be a potential pathway for zoonotic disease transmission from the bat reservoirs. The disease, then, represents a potential zoonotic risk. To characterize the spatial habitat of flying fox populations along Thailand’s Central Plain, and to map potential contact zones between flying fox habitats, pig farms and human settlements, we conducted field observation, remote sensing, and ecological niche modeling to characterize flying fox colonies and their ecological neighborhoods. A Potential Surface Analysis was applied to map contact zones among local epizootic actors.ResultsFlying fox colonies are found mainly on Thailand’s Central Plain, particularly in locations surrounded by bodies of water, vegetation, and safe havens such as Buddhist temples. High-risk areas for Nipah zoonosis in pigs include the agricultural ring around the Bangkok metropolitan region where the density of pig farms is high.ConclusionsPassive and active surveillance programs should be prioritized around Bangkok, particularly on farms with low biosecurity, close to water, and/or on which orchards are concomitantly grown. Integration of human and animal health surveillance should be pursued in these same areas. Such proactive planning would help conserve flying fox colonies and should help prevent zoonotic transmission of Nipah and other pathogens.


BMC Veterinary Research | 2014

Spatial epidemiology of porcine reproductive and respiratory syndrome in Thailand

Weerapong Thanapongtharm; Catherine Linard; Nutavadee N Pamaranon; Sarayuth S Kawkalong; Tanom T Noimoh; Karoon Chanachai; Tippawon T Parakgamawongsa; Marius Gilbert

BackgroundPorcine reproductive and respiratory syndrome (PRRS) has become a worldwide endemic disease of pigs. In 2006, an atypical and more virulent PRRS (HP-PRRS) emerged in China and spread to many countries, including Thailand. This study aimed to provide a first description of the spatio-temporal pattern of PRRS in Thailand and to quantify the statistical relationship between the presence of PRRS at the sub-district level and a set of risk factors. This should provide a basis for improving disease surveillance and control of PRRS in Thailand.ResultsSpatial scan statistics were used to detect clusters of outbreaks and allowed the identification of six spatial clusters covering 15 provinces of Thailand. Two modeling approaches were used to relate the presence or absence of PRRS outbreaks at the sub-district level to demographic characteristics of pig farming and other epidemiological spatial variables: autologistic multiple regressions and boosted regression trees (BRT). The variables showing a statistically significant association with PRRS presence in the autologistic multiple regression model were the sub-district human population and number of farms with breeding sows. The predictive power of the model, as measured by the area under the curve (AUC) of the receiver operating characteristics (ROC) plots was moderate. BRT models had higher goodness of fit the metrics and identified the sub-district human population and density of farms with breeding sows as important predictor variables.ConclusionsThe results indicated that farms with breeding sows may be an important group for targeted surveillance and control. However, these findings obtained at the sub-district level should be complemented by farm-level epidemiological investigations in order to obtain a more comprehensive view of the factors affecting PRRS presence. In this study, the outbreaks of PRRS could not be differentiated from the potential novel HP-PPRS form, which was recently discovered in the country.


BMC Veterinary Research | 2016

Spatial analysis and characteristics of pig farming in Thailand

Weerapong Thanapongtharm; Catherine Linard; Pornpiroon Chinson; Suwicha Kasemsuwan; Marjolein Visser; Andrea E. Gaughan; Michael Epprech; Timothy P. Robinson; Marius Gilbert

BackgroundIn Thailand, pig production intensified significantly during the last decade, with many economic, epidemiological and environmental implications. Strategies toward more sustainable future developments are currently investigated, and these could be informed by a detailed assessment of the main trends in the pig sector, and on how different production systems are geographically distributed. This study had two main objectives. First, we aimed to describe the main trends and geographic patterns of pig production systems in Thailand in terms of pig type (native, breeding, and fattening pigs), farm scales (smallholder and large-scale farming systems) and type of farming systems (farrow-to-finish, nursery, and finishing systems) based on a very detailed 2010 census. Second, we aimed to study the statistical spatial association between these different types of pig farming distribution and a set of spatial variables describing access to feed and markets.ResultsOver the last decades, pig population gradually increased, with a continuously increasing number of pigs per holder, suggesting a continuing intensification of the sector. The different pig-production systems showed very contrasted geographical distributions. The spatial distribution of large-scale pig farms corresponds with that of commercial pig breeds, and spatial analysis conducted using Random Forest distribution models indicated that these were concentrated in lowland urban or peri-urban areas, close to means of transportation, facilitating supply to major markets such as provincial capitals and the Bangkok Metropolitan region. Conversely the smallholders were distributed throughout the country, with higher densities located in highland, remote, and rural areas, where they supply local rural markets. A limitation of the study was that pig farming systems were defined from the number of animals per farm, resulting in their possible misclassification, but this should have a limited impact on the main patterns revealed by the analysis.ConclusionsThe very contrasted distribution of different pig production systems present opportunities for future regionalization of pig production. More specifically, the detailed geographical analysis of the different production systems will be used to spatially-inform planning decisions for pig farming accounting for the specific health, environment and economical implications of the different pig production systems.


Scientific Reports | 2016

Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia

Mathilde Paul; Flavie Goutard; Floriane Roulleau; Davun Holl; Weerapong Thanapongtharm; François Roger; Annelise Tran

The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers’ livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border.


bioRxiv | 2018

Robustness of local control strategies under modelling uncertainties: the 2004 avian infuenza H5N1 outbreak in Thailand

Renata Retkute; Chris P. Jewell; Thomas P. Van Boeckel; Geli Zhang; Xiangming Xiao; Weerapong Thanapongtharm; Matthew James Keeling; Marius Gilbert; Michael J. Tildesley

The Highly Pathogenic Avian Influenza (HPAI) subtype H5N1 virus persists in many countries and has been circulating in poultry, wild birds. In addition, the virus has emerged in other species and frequent zoonotic spillover events indicate that there remains a significant risk to human health. It is crucial to understand the dynamics of the disease in the poultry industry to develop a more comprehensive knowledge of the risks of transmission and to establish a better distribution of resources when implementing control. In this paper, we develop a set of mathematical models that simulate the spread of HPAI H5N1 in the poultry industry in Thailand, utilising data from the 2004 epidemic. The model that incorporates the intensity of duck farming when assessing transmision risk provides the best fit to the spatiotemporal characteristics of the observed outbreak, implying that intensive duck farming drives transmission of HPAI in Thailand. We also extend our models using a sequential model fitting approach to explore the ability of the models to be used in “real time” during novel disease outbreaks. We conclude that, whilst predictions of epidemic size are estimated poorly in the early stages of disease outbreaks, the model accurately predicts the preferred control policy that should be deployed to minimise the impact of the disease.


Preventive Veterinary Medicine | 2018

Dynamics of the 2004 avian influenza H5N1 outbreak in Thailand: The role of duck farming, sequential model fitting and control

Renata Retkute; Chris P. Jewell; Thomas P. Van Boeckel; Geli Zhang; Xiangming Xiao; Weerapong Thanapongtharm; Matthew James Keeling; Marius Gilbert; Michael J. Tildesley

The Highly Pathogenic Avian Influenza (HPAI) subtype H5N1 virus persists in many countries and has been circulating in poultry, wild birds. In addition, the virus has emerged in other species and frequent zoonotic spillover events indicate that there remains a significant risk to human health. It is crucial to understand the dynamics of the disease in the poultry industry to develop a more comprehensive knowledge of the risks of transmission and to establish a better distribution of resources when implementing control. In this paper, we develop a set of mathematical models that simulate the spread of HPAI H5N1 in the poultry industry in Thailand, utilising data from the 2004 epidemic. The model that incorporates the intensity of duck farming when assessing transmision risk provides the best fit to the spatiotemporal characteristics of the observed outbreak, implying that intensive duck farming drives transmission of HPAI in Thailand. We also extend our models using a sequential model fitting approach to explore the ability of the models to be used in “real time” during novel disease outbreaks. We conclude that, whilst predictions of epidemic size are estimated poorly in the early stages of disease outbreaks, the model can infer the preferred control policy that should be deployed to minimise the impact of the disease.

Collaboration


Dive into the Weerapong Thanapongtharm's collaboration.

Top Co-Authors

Avatar

Marius Gilbert

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangming Xiao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Catherine Linard

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Timothy P. Robinson

International Livestock Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Roger

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge