Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weerayuth Kittichotirat is active.

Publication


Featured researches published by Weerayuth Kittichotirat.


Journal of Dental Research | 2016

Evolutionary Divergence of Aggregatibacter actinomycetemcomitans

Weerayuth Kittichotirat; Roger E. Bumgarner; Casey Chen

Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated with periodontitis. The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized. This study provides a comprehensive genomic analysis of A. actinomycetemcomitans and the closely related nonpathogenic Aggregatibacter aphrophilus. Whole genome sequencing by Illumina MiSeq platform was performed for 31 A. actinomycetemcomitans and 2 A. aphrophilus strains. Sequence similarity analysis shows a total of 3,220 unique genes across the 2 species, where 1,550 are core genes present in all genomes and 1,670 are variable genes (accessory genes) missing in at least 1 genome. Phylogenetic analysis based on 397 concatenated core genes distinguished A. aphrophilus and A. actinomycetemcomitans. The latter was in turn divided into 5 clades: clade b (serotype b), clade c (serotype c), clade e/f (serotypes e and f), clade a/d (serotypes a and d), and clade e′ (serotype e strains). Accessory genes accounted for 14.1% to 23.2% of the A. actinomycetemcomitans genomes, with a majority belonging to the category of poorly characterized by Cluster of Orthologous Groups classification. These accessory genes were often organized into genomic islands (n = 387) with base composition biases, suggesting their acquisitions via horizontal gene transfer. There was a greater degree of similarity in gene content and genomic islands among strains within clades than between clades. Strains of clade e′ isolated from human were found to be missing the genomic island that carries genes encoding cytolethal distending toxins. Taken together, the results suggest a pattern of sequential divergence, starting from the separation of A. aphrophilus and A. actinomycetemcomitans through gain and loss of genes and ending with the divergence of the latter species into distinct clades and serotypes. With differing constellations of genes, the A. actinomycetemcomitans clades may have evolved distinct adaptation strategies to the human oral cavity.


Genome Announcements | 2015

Draft Genome Sequence of the Pathogenic Oomycete Pythium insidiosum Strain Pi-S, Isolated from a Patient with Pythiosis.

Thidarat Rujirawat; Preecha Patumcharoenpol; Tassanee Lohnoo; Wanta Yingyong; Tassanee Lerksuthirat; Sithichoke Tangphatsornruang; Prapat Suriyaphol; Laura J. Grenville-Briggs; Gagan Garg; Weerayuth Kittichotirat; Theerapong Krajaejun

ABSTRACT Pythium insidiosum is an oomycete that causes a life-threatening infectious disease called pythiosis in humans and animals living in tropical and subtropical countries. Here, we report the first draft genome sequence of P. insidiosum. The genome of P. insidiosum is 53.2 Mb and contains 14,962 open reading frames.


The Open Dentistry Journal | 2012

Metagenomic Analysis of Subgingival Microbiota Following Non-Surgical Periodontal Therapy: a Pilot Study

Theresia Laksmana; Weerayuth Kittichotirat; Yanyan Huang; Weizhen Chen; Michael Jorgensen; Roger E. Bumgarner; Casey Chen

This study tested the feasibility of a high throughput metagenomic approach to analyze the pre- and posttreatment of subgingival plaque in two subjects with aggressive periodontitis. DNA was extracted from subgingival samples and subjected to PCR amplification of the c2-c4 regions of the 16S rDNA using primers with bar codes to identify individual samples. The PCR products were pooled and sequenced for the v4 region of the 16S rDNA using the 454 FLX standard platform. The results were analyzed for species/phylotypes in the Human Oral Microbiome Database (HOMD) and Ribosomal Database Project (RDP) database. The sequencing of the amplicons resulted in 24,673 reads and identified 208 species/phylotypes. Of those, 129 species/phylotypes were identified in both patients but their proportions varied. While >120 species/phylotypes were identified in all samples, 28-42 species/phylotypes cumulatively represent 90% of all subgingival bacteria in each sample. The remaining species/phylotypes each constituted ≤0.2% of the total subgingival bacteria. In conclusion, the subgingival microbiota are characterized by high species richness dominated by a few species/ phylotypes. The microbiota changed after periodontal therapy. High throughput metagenomic analysis is applicable to assess the complexity and changes of the subgingival microbiota.


PLOS ONE | 2016

Human Serum-Specific Activation of Alternative Sigma Factors, the Stress Responders in Aggregatibacter actinomycetemcomitans.

Gaoyan Tang-Siegel; Roger E. Bumgarner; Teresa Ruiz; Weerayuth Kittichotirat; Weizhen Chen; Casey Chen

Aggregatibacter actinomycetemcomitans, a known pathogen causing periodontal disease and infective endocarditis, is a survivor in the periodontal pocket and blood stream; both environments contain serum as a nutrient source. To screen for unknown virulence factors associated with this microorganism, A. actinomycetemcomitans was grown in serum-based media to simulate its in vivo environment. Different strains of A. actinomycetemcomitans showed distinct growth phenotypes only in the presence of human serum, and they were grouped into high- and low-responder groups. High-responders comprised mainly serotype c strains, and showed an unusual growth phenomenon, featuring a second, rapid increase in turbidity after 9-h incubation that reached a final optical density 2- to 7-fold higher than low-responders. Upon further investigation, the second increase in turbidity was not caused by cell multiplication, but by cell death. Whole transcriptomic analysis via RNA-seq identified 35 genes that were up-regulated by human serum, but not horse serum, in high-responders but not in low-responders, including prominently an alternative sigma factor rpoE (σE). A lacZ reporter construct driven by the 132-bp rpoE promoter sequence of A. actinomycetemcomitans responded dramatically to human serum within 90 min of incubation only when the construct was carried by a high responder strain. The rpoE promoter is 100% identical among high- and low-responder strains. Proteomic investigation showed potential interactions between human serum protein, e.g. apolipoprotein A1 (ApoA1) and A. actinomycetemcomitans. The data clearly indicated a different activation process for rpoE in high- versus low-responder strains. This differential human serum-specific activation of rpoE, a putative extra-cytoplasmic stress responder and global regulator, suggests distinct in vivo adaptations among different strains of A. actinomycetemcomitans.


MicrobiologyOpen | 2015

Comparative genomic analysis of seven Mycoplasma hyosynoviae strains

Eric Bumgardner; Weerayuth Kittichotirat; Roger E. Bumgarner; Paulraj K. Lawrence

Infection with Mycoplasma hyosynoviae can result in debilitating arthritis in pigs, particularly those aged 10 weeks or older. Strategies for controlling this pathogen are becoming increasingly important due to the rise in the number of cases of arthritis that have been attributed to infection in recent years. In order to begin to develop interventions to prevent arthritis caused by M. hyosynoviae, more information regarding the specific proteins and potential virulence factors that its genome encodes was needed. However, the genome of this emerging swine pathogen had not been sequenced previously. In this report, we present a comparative analysis of the genomes of seven strains of M. hyosynoviae isolated from different locations in North America during the years 2010 to 2013. We identified several putative virulence factors that may contribute to the ability of this pathogen to adhere to host cells. Additionally, we discovered several prophage genes present within the genomes of three strains that show significant similarity to MAV1, a phage isolated from the related species, M. arthritidis. We also identified CRISPR‐Cas and type III restriction and modification systems present in two strains that may contribute to their ability to defend against phage infection.


Data in Brief | 2017

Draft genome and sequence variant data of the oomycete Pythium insidiosum strain Pi45 from the phylogenetically-distinct Clade-III

Weerayuth Kittichotirat; Preecha Patumcharoenpol; Thidarat Rujirawat; Tassanee Lohnoo; Wanta Yingyong; Theerapong Krajaejun

Pythium insidiosum is a unique oomycete microorganism, capable of infecting humans and animals. The organism can be phylogenetically categorized into three distinct clades: Clade-I (strains from the Americas); Clade-II (strains from Asia and Australia), and Clade–III (strains from Thailand and the United States). Two draft genomes of the P. insidiosum Clade-I strain CDC-B5653 and Clade-II strain Pi-S are available in the public domain. The genome of P. insidiosum from the distinct Clade-III, which is distantly-related to the other two clades, is lacking. Here, we report the draft genome sequence of the P. insidiosum strain Pi45 (also known as MCC13; isolated from a Thai patient with pythiosis; accession numbers BCFM01000001-BCFM01017277) as a representative strain of the phylogenetically-distinct Clade-III. We also report a genome-scale data set of sequence variants (i.e., SNPs and INDELs) found in P. insidiosum (accessible online at the Mendeley database: http://dx.doi.org/10.17632/r75799jy6c.1).


Gene | 2016

Comparative mitochondrial genome analysis of Pythium insidiosum and related oomycete species provides new insights into genetic variation and phylogenetic relationships.

Sithichoke Tangphatsornruang; Panthita Ruang-areerate; Duangjai Sangsrakru; Thidarat Rujirawat; Tassanee Lohnoo; Weerayuth Kittichotirat; Preecha Patumcharoenpol; Laura J. Grenville-Briggs; Theerapong Krajaejun

Oomycetes are eukaryotic microorganisms, which are phylogenetically distinct from the true-fungi, which they resemble morphologically. While many oomycetes are pathogenic to plants, Pythium insidiosum is capable of infecting humans and animals. Mitochondrial (mt) genomes are valuable genetic resources for exploring the evolution of eukaryotes. During the course of 454-based nuclear genome sequencing, we identified a complete 54.9 kb mt genome sequence, containing 2 large inverted repeats, from P. insidiosum. It contains 65 different genes (including 2 ribosomal RNA genes, 25 transfer RNA genes and 38 genes encoding NADH dehydrogenases, cytochrome b, cytochrome c oxidases, ATP synthases, and ribosomal proteins). Thirty-nine of the 65 genes have two copies, giving a total of 104 genes. A set of 30 conserved protein-coding genes from the mt genomes of P. insidiosum, 11 other oomycetes, and 2 diatoms (outgroup) were used for phylogenetic analyses. The oomycetes can be classified into 2 phylogenetic groups, in relation to their taxonomic lineages: Saprolegnialean and Peronosporalean. P. insidiosum is more closely related to Pythium ultimum than other oomycetes. In conclusion, the complete mt genome of P. insidiosum was successfully sequenced, assembled, and annotated, providing a useful genetic resource for exploring the biology and evolution of P. insidiosum and other oomycetes.


Scientific Reports | 2018

Probing the Phylogenomics and Putative Pathogenicity Genes of Pythium insidiosum by Oomycete Genome Analyses

Thidarat Rujirawat; Preecha Patumcharoenpol; Tassanee Lohnoo; Wanta Yingyong; Yothin Kumsang; Penpan Payattikul; Sithichoke Tangphatsornruang; Prapat Suriyaphol; Onrapak Reamtong; Gagan Garg; Weerayuth Kittichotirat; Theerapong Krajaejun

Pythium insidiosum is a human-pathogenic oomycete. Many patients infected with it lose organs or die. Toward the goal of developing improved treatment options, we want to understand how Py. insidiosum has evolved to become a successful human pathogen. Our approach here involved the use of comparative genomic and other analyses to identify genes with possible functions in the pathogenicity of Py. insidiosum. We generated an Oomycete Gene Table and used it to explore the genome contents and phylogenomic relationships of Py. insidiosum and 19 other oomycetes. Initial sequence analyses showed that Py. insidiosum is closely related to Pythium species that are not pathogenic to humans. Our analyses also indicated that the organism harbours secreted and adhesin-like proteins, which are absent from related species. Putative virulence proteins were identified by comparison to a set of known virulence genes. Among them is the urease Ure1, which is absent from humans and thus a potential diagnostic and therapeutic target. We used mass spectrometric data to successfully validate the expression of 30% of 14,962 predicted proteins and identify 15 body temperature (37 °C)-dependent proteins of Py. insidiosum. This work begins to unravel the determinants of pathogenicity of Py. insidiosum.


Data in Brief | 2018

Draft genome sequences of the oomycete Pythium insidiosum strain CBS 573.85 from a horse with pythiosis and strain CR02 from the environment

Preecha Patumcharoenpol; Thidarat Rujirawat; Tassanee Lohnoo; Wanta Yingyong; Nongnuch Vanittanakom; Weerayuth Kittichotirat; Theerapong Krajaejun

Pythium insidiosum is an aquatic oomycete microorganism that causes the fatal infectious disease, pythiosis, in humans and animals. The organism has been successfully isolated from the environment worldwide. Diagnosis and treatment of pythiosis is difficult and challenging. Genome sequences of P. insidiosum, isolated from humans, are available and accessible in public databases. To further facilitate biology-, pathogenicity-, and evolution-related genomic and genetic studies of P. insidiosum, we report two additional draft genome sequences of the P. insidiosum strain CBS 573.85 (35.6 Mb in size; accession number, BCFO00000000.1) isolated from a horse with pythiosis, and strain CR02 (37.7 Mb in size; accession number, BCFR00000000.1) isolated from the environment.


Genome Announcements | 2014

Genome Sequence of a Presumptive Mannheimia haemolytica Strain with an A1/A6-Cross-Reactive Serotype from a White-Tailed Deer (Odocoileus virginianus)

Paulraj K. Lawrence; Russell F. Bey; Brittanny Wiener; Weerayuth Kittichotirat; Roger E. Bumgarner

ABSTRACT Mannheimia haemolytica is a Gram-negative bacterium and the principal etiological agent associated mostly with bovine respiratory disease complex. However, we report here the sequence of a strain with the novel A1/A6-cross-reactive serotype, strain PKL10, isolated from white-tailed deer. PKL10 was isolated from the spleen of farmed white-tailed deer showing clinical signs of pneumonia. The genome structure of PKL10 is dramatically different from that of previously sequenced isolates, which was demonstrated by genome alignments. In addition, the coding sequences in PKL10 share approximately 86% sequence identity with the coding sequences in other fully sequenced M. haemolytica strains. This suggests that PKL10 is a novel Mannheimia species.

Collaboration


Dive into the Weerayuth Kittichotirat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Preecha Patumcharoenpol

King Mongkut's University of Technology Thonburi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sithichoke Tangphatsornruang

Thailand National Science and Technology Development Agency

View shared research outputs
Top Co-Authors

Avatar

Casey Chen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge