Wei-Chieh Cheng
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wei-Chieh Cheng.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Ming-Ta Sung; Yen-Ting Lai; Chia-Ying Huang; Lien-Yang Chou; Hao-Wei Shih; Wei-Chieh Cheng; Chi-Huey Wong; Che Ma
Drug-resistant bacteria have caused serious medical problems in recent years, and the need for new antibacterial agents is undisputed. Transglycosylase, a multidomain membrane protein essential for cell wall synthesis, is an excellent target for the development of new antibiotics. Here, we determined the X-ray crystal structure of the bifunctional transglycosylase penicillin-binding protein 1b (PBP1b) from Escherichia coli in complex with its inhibitor moenomycin to 2.16-Å resolution. In addition to the transglycosylase and transpeptidase domains, our structure provides a complete visualization of this important antibacterial target, and reveals a domain for protein–protein interaction and a transmembrane helix domain essential for substrate binding, enzymatic activity, and membrane orientation.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Ching-Yao Su; Ting-Jen R. Cheng; Mengi Lin; Shi-Yun Wang; Wen-I Huang; Shao-Ying Lin-Chu; Yu-Hou Chen; Chung-Yi Wu; Michael M. C. Lai; Wei-Chieh Cheng; Ying-Ta Wu; Ming-Daw Tsai; Yih-Shyun E. Cheng; Chi-Huey Wong
As influenza viruses have developed resistance towards current drugs, new inhibitors that prevent viral replication through different inhibitory mechanisms are useful. In this study, we developed a screening procedure to search for new antiinfluenza inhibitors from 1,200,000 compounds and identified previously reported as well as new antiinfluenza compounds. Several antiinfluenza compounds were inhibitory to the influenza RNA-dependent RNA polymerase (RdRP), including nucleozin and its analogs. The most potent nucleozin analog, 3061 (FA-2), inhibited the replication of the influenza A/WSN/33 (H1N1) virus in MDCK cells at submicromolar concentrations and protected the lethal H1N1 infection of mice. Influenza variants resistant to 3061 (FA-2) were isolated and shown to have the mutation on nucleoprotein (NP) that is distinct from the recently reported resistant mutation of Y289H [Kao R, et al. (2010) Nat Biotechnol 28:600]. Recombinant influenza carrying the Y52H NP is also resistant to 3061 (FA-2), and NP aggregation induced by 3061 (FA-2) was identified as the most likely cause for inhibition. In addition, we identified another antiinfluenza RdRP inhibitor 367 which targets PB1 protein but not NP. A mutant resistant to 367 has H456P mutation at the PB1 protein and both the recombinant influenza and the RdRP expressing the PB1 H456P mutation have elevated resistance to 367. Our high-throughput screening (HTS) campaign thus resulted in the identification of antiinfluenza compounds targeting RdRP activity.
Bioorganic & Medicinal Chemistry | 2008
En-Lun Tsou; Sih-Yu Chen; Ming-Hsun Yang; Shih-Chi Wang; Ting-Ren Rachel Cheng; Wei-Chieh Cheng
Inspired by polyhydroxylated pyrrolidine alkaloid natural products, a 18-membered library of 2-aryl polyhydroxylated pyrrolidines has been efficiently prepared in two or three synthetic steps from the known chiral cyclic nitrones with high yield and purity and excellent stereoselectivity. The inhibitory activity of all these compounds against various glycosidase enzymes was evaluated. Interestingly, 15 and 19 show better inhibitory activities than radicamine A (20) and B (18) against alpha-glucosidases. The IC(50) values of 15 and 19 are 1.1 and 0.5 microM, respectively. In this study, we also discovered the substituent(s) on the aryl ring could affect the inhibition potency and selectivity against glycosidases.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Ting-Jen R. Cheng; Ming-Ta Sung; Hsin-Yu Liao; Yi-Fan Chang; Chia-Wei Chen; Chia-Ying Huang; Lien-Yang Chou; Yen-Da Wu; Yin-Hsuan Chen; Yih-Shyun E. Cheng; Chi-Huey Wong; Che Ma; Wei-Chieh Cheng
Moenomycin inhibits bacterial growth by blocking the transglycosylase activity of class A penicillin-binding proteins (PBPs), which are key enzymes in bacterial cell wall synthesis. We compared the binding affinities of moenomycin A with various truncated PBPs by using surface plasmon resonance analysis and found that the transmembrane domain is important for moenomycin binding. Full-length class A PBPs from 16 bacterial species were produced, and their binding activities showed a correlation with the antimicrobial activity of moenomycin against Enterococcus faecalis and Staphylococcus aureus. On the basis of these findings, a fluorescence anisotropy-based high-throughput assay was developed and used successfully for identification of transglycosylase inhibitors.
Bioorganic & Medicinal Chemistry | 2010
Ting-Jen R. Cheng; Ying-Ta Wu; Shih-Ting Yang; Kien-Hock Lo; Shao-Kang Chen; Yin-Hsuan Chen; Wen-I Huang; Chih-Hung Yuan; Chih-Wei Guo; Lin-Ya Huang; Kuo-Ting Chen; Hao-Wei Shih; Yih-Shyun E. Cheng; Wei-Chieh Cheng; Chi-Huey Wong
To identify new transglycosylase inhibitors with potent anti-methicillin-resistant Staphylococcus aureus (MRSA) activities, a high-throughput screening against Staphylococcus aureus was conducted to look for antibacterial cores in our 2M compound library that consists of natural products, proprietary collection, and synthetic molecules. About 3600 hits were identified from the primary screening and the subsequent confirmation resulted in a total of 252 compounds in 84 clusters which showed anti-MRSA activities with MIC values as low as 0.1 μg/ml. Subsequent screening targeting bacterial transglycosylase identified a salicylanilide-based core that inhibited the lipid II polymerization and the moenomycin-binding activities of transglycosylase. Among the collected analogues, potent inhibitors with the IC(50) values below 10 μM against transglycosylase were identified. The non-carbonhydrate scaffold reported in this study suggests a new direction for development of bacterial transglycosylase inhibitors.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Chia-Ying Huang; Hao-Wei Shih; Li-Ying Lin; Yi-Wen Tien; Ting-Jen R. Cheng; Wei-Chieh Cheng; Chi-Huey Wong; Che Ma
Bacterial transpeptidase and transglycosylase on the surface are essential for cell wall synthesis, and many antibiotics have been developed to target the transpeptidase; however, the problem of antibiotic resistance has arisen and caused a major threat in bacterial infection. The transglycosylase has been considered to be another excellent target, but no antibiotics have been developed to target this enzyme. Here, we determined the crystal structure of the Staphylococcus aureus membrane-bound transglycosylase, monofunctional glycosyltransferase, in complex with a lipid II analog to 2.3 Å resolution. Our results showed that the lipid II-contacting residues are not only conserved in WT and drug-resistant bacteria but also significant in enzymatic activity. Mechanistically, we proposed that K140 and R148 in the donor site, instead of the previously proposed E156, are used to stabilize the pyrophosphate-leaving group of lipid II, and E100 in the acceptor site acts as general base for the 4-OH of GlcNAc to facilitate the transglycosylation reaction. This mechanism, further supported by mutagenesis study and the structure of monofunctional glycosyltransferase in complex with moenomycin in the donor site, provides a direction for antibacterial drugs design.
Organic Letters | 2010
Chen-Yu Liu; Chih-Wei Guo; Yi-Fan Chang; Jen-Tsung Wang; Hao-Wei Shih; Yu-Fang Hsu; Chia-Wei Chen; Shao-Kang Chen; Yen-Chih Wang; Ting-Jen R. Cheng; Che Ma; Chi-Huey Wong; Jim-Min Fang; Wei-Chieh Cheng
The preparation of a novel fluorescent lipid II-based substrate for transglycosylases (TGases) is described. This substrate has characteristic structural features including a shorter lipid chain, a fluorophore tag at the end of the lipid chain rather than on the peptide chain, and no labeling with a radioactive atom. This fluorescent substrate is readily utilized in TGase activity assays to characterize TGases and also to evaluate the activities of TGase inhibitors.
Organic and Biomolecular Chemistry | 2010
Hao-Wei Shih; Kuo-Ting Chen; Shao-Kang Chen; Chia-Ying Huang; Ting-Jen R. Cheng; Che Ma; Chi-Huey Wong; Wei-Chieh Cheng
The development of iminocyclitol-based small molecule libraries against a bacterial TGase is described. An iminocyclitol was conjugated with a pyrophosphate mimic using either a 1,3-dipolar cycloaddition or reductive amination reaction, which was then condensed with a variety of lipophilic carboxylic acids in an amide bond coupling to generate a desired molecular library. With assistance of microtiter plate-based combinatorial chemistry and in situ screening, a potential inhibitor, the first potent iminocyclitol-based inhibitor against bacterial TGases was efficiently developed.
Organic Letters | 2011
Hao-Wei Shih; Kuo-Ting Chen; Ting-Jen R. Cheng; Chi-Huey Wong; Wei-Chieh Cheng
A new synthetic approach toward the bacterial transglycosylase substrates, Lipid II (1) and Lipid IV (2), is described. The key disaccharide was synthesized using the concept of relative reactivity value (RRV) and elaborated to Lipid II and Lipid IV by conjugation with the appropriate oligopeptides and pyrophosphate lipids. Interestingly, the results from our HPLC-based functional TGase assay suggested Lipid IV has a higher affinity for the enzyme than Lipid II.
Molecular Diversity | 2011
Yi-Fan Chang; Chih-Wei Guo; Ting-Hao Chan; Yi-Wen Pan; En-Lun Tsou; Wei-Chieh Cheng
The preparation of natural product-like polyhydroxylated pyrrolidine and piperidine alkaloids using a combination of solid– and solution-phase organic synthesis is described. The key intermediates, enantiopure five- or six-membered tri-O-benzyl cyclic nitrones, were efficiently prepared on solid support from accessible chiral furanosides and pyranosides, respectively. The substituent diversity was achieved by a diastereoselective addition of a variety of Grignard reagents to the cyclic nitrones in solution-phase synthesis. All reaction steps and work-up procedures were modified to allow the use of automated equipment. A 36-membered demonstration library with three diversity elements (core, configuration, and substituent) was prepared in good yield and purity.