Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wei Ching Chen is active.

Publication


Featured researches published by Wei Ching Chen.


Molecular Cancer Therapeutics | 2013

Attenuation of Argininosuccinate Lyase Inhibits Cancer Growth via Cyclin A2 and Nitric Oxide

Hau Lun Huang; Hui Ping Hsu; Shu Chus Shieh; Yung Sheng Chang; Wei Ching Chen; Chien Yu Cho; Chiao Fang Teng; Ih-Jen Su; Wen Chun Hung; Ming Derg Lai

Arginine biosynthesis and nitric oxide (NO) production are important for cancer homeostasis. Degradation of arginine may be used to inhibit liver tumors with low argininosuccinate synthetase (ASS) expression. In this report, we investigated an alternative therapeutic approach by targeting argininosuccinate lyase (ASL). ASL is transcriptionally induced by endoplasmic reticulum stress and is overexpressed in some human liver tumors. Knockdown of ASL expression by short hairpin RNA (shRNA) in three liver cancer cell lines, ML-1, HuH-7, and HepG2, decreased colony formation in vitro and tumor growth in vivo. Furthermore, lentiviral infection of ASL shRNA inhibited tumor growth in a therapeutic animal tumor model. Analysis of ASL shRNA on the cell-cycle progression revealed a G2–M delay. Among cell-cycle regulatory molecules, cyclin A2 expression was reduced. Reintroduction of exogenous cyclin A2 restored the cell growth in ASL-knockdown cells. Autophagy was observed in the cells treated with ASL shRNA, as shown by an increase in LC3-II levels and autophagosome formation. The total cellular arginine level was not altered significantly. Inhibition of autophagy further attenuated cell growth, suggesting that autophagy induced by ASL shRNA plays a feedback prosurvival function. Knockdown of ASL reduced NO content, and addition of NO donor partially recovered the growth inhibition by ASL shRNA. In summary, downregulation of ASL attenuated tumor growth and the inhibition was mainly mediated by a decrease of cyclin A2 and NO. Mol Cancer Ther; 12(11); 2505–16. ©2013 AACR.


PLOS ONE | 2016

Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer.

Wei Ching Chen; Chih Yang Wang; Yu Hsuan Hung; Tzu Yang Weng; Meng Chi Yen; Ming Derg Lai

Dysregulated lipid metabolism contributes to cancer progression. Our previous study indicates that long-chain fatty acyl-Co A synthetase (ACSL) 3 is essential for lipid upregulation induced by endoplasmic reticulum stress. In this report, we aimed to identify the role of ACSL family in cancer with systematic analysis and in vitro experiment. We explored the ACSL expression using Oncomine database to determine the gene alteration during carcinogenesis and identified the association between ACSL expression and the survival of cancer patient using PrognoScan database. ACSL1 may play a potential oncogenic role in colorectal and breast cancer and play a potential tumor suppressor role in lung cancer. Co-expression analysis revealed that ACSL1 was coexpressed with MYBPH, PTPRE, PFKFB3, SOCS3 in colon cancer and with LRRFIP1, TSC22D1 in lung cancer. In accordance with PrognoScan analysis, downregulation of ACSL1 in colon and breast cancer cell line inhibited proliferation, migration, and anchorage-independent growth. In contrast, increase of oncogenic property was observed in lung cancer cell line by attenuating ACSL1. High ACSL3 expression predicted a better prognosis in ovarian cancer; in contrast, high ACSL3 predicted a worse prognosis in melanoma. ACSL3 was coexpressed with SNUPN, TRIP13, and SEMA5A in melanoma. High expression of ACSL4 predicted a worse prognosis in colorectal cancer, but predicted better prognosis in breast, brain and lung cancer. ACSL4 was coexpressed with SERPIN2, HNRNPCL1, ITIH2, PROCR, LRRFIP1. High expression of ACSL5 predicted good prognosis in breast, ovarian, and lung cancers. ACSL5 was coexpressed with TMEM140, TAPBPL, BIRC3, PTPRE, and SERPINB1. Low ACSL6 predicted a worse prognosis in acute myeloid leukemia. ACSL6 was coexpressed with SOX6 and DARC. Altogether, different members of ACSLs are implicated in diverse types of cancer development. ACSL-coexpressed molecules may be used to further investigate the role of ACSL family in individual type of cancers.


Scientific Reports | 2015

Argininosuccinate synthetase 1 suppression and arginine restriction inhibit cell migration in gastric cancer cell lines.

Yan Shen Shan; Hui Ping Hsu; Ming Derg Lai; Meng Chi Yen; Wei Ching Chen; Jung Hua Fang; Tzu Yang Weng; Yi Ling Chen

Gastric cancer metastasis remains a major cause of cancer-related deaths. There is an urgent need to develop new therapeutic approaches targeting metastatic gastric cancer. Argininosuccinate synthetase 1 (ASS1) expression is increased in gastric cancer. We detected the protein expression of ASS1 in human gastric cancer cell lines (AGS, NCI-N87, and MKN45) and in murine gastric cancer cell lines (3I and 3IB2). We used vector-mediated short hairpin RNA (shRNA) expression to silence ASS1 expression in the MKN45 and 3IB2 cell lines, and analyzed the effects of this protein on cell migration and metastasis. We demonstrated that ASS1 silencing suppressed cell migration in the MKN45 and 3IB2 cell lines. ASS1 knockdown significantly reduced liver metastasis in mice after the intrasplenic implantation of 3IB2 cancer cell clones. To determine whether arginine restriction may represent a therapeutic approach to treat gastric cancer, the sensitivity of tumor cells to arginine depletion was determined in gastric cancer cells. Arginine depletion significantly inhibited cell migration in the gastric cancer cell line. The silencing of ASS1 expression in MKN45 and 3IB2 gastric cancer cells markedly decreased STAT3 protein expression. In conclusion, our results indicate that the ASS1 protein is required for cell migration in gastric cancer cell lines.


Oncotarget | 2015

Therapeutics targeting CD90-integrin-AMPK-CD133 signal axis in liver cancer

Wei Ching Chen; Yung Sheng Chang; Hui Ping Hsu; Meng Chi Yen; Hau Lun Huang; Chien Yu Cho; Chih Yang Wang; Tzu Yang Weng; Po Ting Lai; Ching-Shih Chen; Yih Jyh Lin; Ming Derg Lai

CD90 is used as a marker for cancer stem cell in liver cancer. We aimed to study the mechanism by which CD90 promoted liver cancer progression and identify the new therapeutic targets on CD90 signal pathway. Ectopic expression of CD90 in liver cancer cell lines enhanced anchorage-independent growth and tumor progression. Furthermore, CD90 promoted sphere formation in vitro and upregulated the expression of the cancer stem cell marker CD133. The CD133 expression was higher in CD45-CD90+ cells in liver cancer specimen. The natural carcinogenic molecules TGF-β-1, HGF, and hepatitis B surface antigen increased the expression of CD90 and CD133. Inhibition of CD90 by either shRNA or antibody attenuated the induction of CD133 and anchorage-independent growth. Lentiviral delivery of CD133 shRNA abolished the tumorigenicity induced by CD90. Ectopic expression of CD90 induced mTOR phosphorylation and AMPK dephosphorylation. Mutation of integrin binding-RLD domain in CD90 attenuated the induction of CD133 and anchorage-independent growth. Similar results were observed after silencing β3 integrin. Signaling analyses revealed that AMPK/mTOR and β3 integrin were required for the induction of CD133 and tumor formation by CD90. Importantly, the energy restriction mimetic agent OSU-CG5 reduced the CD90 population in fresh liver tumor sample and repressed the tumor growth. In contrast, sorafenib did not decrease the CD90+ population. In conclusion, the signal axis of CD90-integrin-mTOR/AMPK-CD133 is critical for promoting liver carcinogenesis. Molecules inhibiting the signal axis, including OSU-CG5 and other inhibitors, may serve as potential novel cancer therapeutic targets in liver cancer.


Molecular Therapy | 2014

A novel cancer therapeutic using thrombospondin 1 in dendritic cells

Tzu Yang Weng; Shih Shien Huang; Meng Chi Yen; Chi Chen Lin; Yi Ling Chen; Chiu Mei Lin; Wei Ching Chen; Chih Yang Wang; Jang Yang Chang; Ming Derg Lai

Induction of thrombospondin 1 (TSP-1) is generally assumed to suppress tumor growth through inhibiting angiogenesis; however, it is less clear how TSP-1 in dendritic cells (DCs) influences tumor progression. We investigated tumor growth and immune mechanism by downregulation of TSP-1 in dendritic cells. Administration of TSP-1 small hairpin RNA (shRNA) through the skin produced anticancer therapeutic effects. Tumor-infiltrating CD4(+) and CD8(+) T cells were increased after the administration of TSP-1 shRNA. The expression of interleukin-12 and interferon-γ in the lymph nodes was enhanced by injection of TSP-1 shRNA. Lymphocytes from the mice injected with TSP-1 shRNA selectively killed the tumor cells, and the cytotoxicity of lymphocytes was abolished by depletion of CD8(+) T cells. Injection of CD11c(+) TSP-1-knockout (TSP-1-KO) bone marrow-derived DCs (BMDCs) delayed tumor growth in tumor-bearing mice. Similarly, antitumor activity induced by TSP-1-KO BMDCs was abrogated by depletion of CD8(+) T cells. In contrast, the administration of shRNAs targeting TSP-2, another TSP family member, did not extend the survival of tumor-bearing mice. Finally, TSP-1 shRNA functioned as an immunotherapeutic adjuvant to augment the therapeutic efficacy of Neu DNA vaccination. Collectively, the downregulation of TSP-1 in DCs produces an effective antitumor response that is opposite to the protumor effects by silencing of TSP-1 within tumor cells.


Oncotarget | 2016

MST3 promotes proliferation and tumorigenicity through the VAV2/Rac1 signal axis in breast cancer

Chien Yu Cho; Kuo Ting Lee; Wei Ching Chen; Chih Yang Wang; Yung Sheng Chang; Hau Lun Huang; Hui Ping Hsu; Meng Chi Yen; Ming Zong Lai; Ming Derg Lai

MST3 (mammalian STE20-like kinase 3) belongs to the Ste20 serine/threonine protein kinase family. The role of MST3 in tumor growth is less studied; therefore, we investigates the function of MST3 in breast cancer. Here, we demonstrate that MST3 is overexpressed in human breast tumors. Online Kaplan-Meier plotter analysis reveals that overexpression of MST3 predicts poor prognosis in breast cancer patients. Knockdown of MST3 with shRNA inhibits proliferation and anchorage-independent growth in vitro. Downregulation of MST3 in triple-negative MDA-MB-231 and MDA-MB-468 breast cancer cells decreases tumor formation in NOD/SCID mice. MST3 interacts with VAV2, but not VAV3, as demonstrated by co-immunoprecipitation and confocal microscopy. By domain mapping of MST3, we determine that the proline-rich region of MST3 (353KDIPKRP359) interacts with the SH3 domain of VAV2. Mutation of the two proline residues in this domain significantly attenuates the interaction between MST3 and VAV2. Overexpression of wild-type MST3 (WT-MST3), but not proline-rich-deleted MST3 (ΔP-MST3), enhances the proliferation rate and anchorage-independent growth of MDA-MB-468 cells. Overexpression of MST3 increases VAV2 phosphorylation and GTP-Rac1, whereas downregulation of MST3 or delivery of ΔP-MST3 results in a reduction of VAV2 and Rac1 activation. Knockdown of MST3 inhibits cyclin D1 protein expression. The Rac1 inhibitor EHop-016 attenuates cell proliferation induced by WT-MST3. Finally, Knockdown of MST3 or Rac1 inhibitor decreases cyclin D protein expression, which is important for tumor growth. These results indicate that MST3 interacts with VAV2 to activate Rac1 and promote the tumorigenicity of breast cancer.


Oncology Reports | 2015

Argininosuccinate lyase is a potential therapeutic target in breast cancer.

Hau Lun Huang; Wei Ching Chen; Hui Ping Hsu; Chien Yu Cho; Yu Hsuan Hung; Chih Yang Wang; Ming Derg Lai

Arginine is a non-essential amino acid that modulates nitric oxide production and cancer homeostasis. In our previous study, we observed that blocking argininosuccinate lyase (ASL) attenuates tumor progression in liver cancer. However, the role of ASL in human breast cancer has been studied to a lesser degree. In the present study, we investigated the effect of targeting ASL in breast cancer. We found that ASL was induced by ER stress and was significantly upregulated in breast cancer tissues compared to that in the corresponding normal tissues. Downregulation of ASL inhibited the growth of breast cancer in vitro and in vivo. The level of cell cycle-related gene, cyclin A2, was reduced and was accompanied by a delay in G2/M transition. ASL shRNA-induced cell inhibition was rescued by exogenous cyclin A2. Furthermore, autophagy was observed in the cells expressing ASL shRNA, and inhibition of autophagy reduced cell growth, indicating that autophagy played a cell survival role in the ASL knockdown cells. Moreover, inhibition of ASL reduced NO content. Introduction of the NO donor partially restored the growth inhibition by ASL shRNA. Thus, the mechanism induced by ASL shRNA which occurred in human breast cancer may be attributed to a decrease in cyclin A2 and NO.


PLOS ONE | 2016

Differential Expression Pattern of THBS1 and THBS2 in Lung Cancer: Clinical Outcome and a Systematic-Analysis of Microarray Databases

Tzu Yang Weng; Chih Yang Wang; Yu Hsuan Hung; Wei Ching Chen; Yi Ling Chen; Ming Derg Lai

Thrombospondin 1 and thrombospondin 2 (THBS1 and THBS2) share similar multifunctional domains, and are known to be antiangiogenic. However, the expression pattern of THBS1 and THBS2 is different, and the specific role of THBS2 in different subtypes of lung cancer remains largely unclear. To evaluate the significance of THBS1 and THBS2 in the development of lung cancer, the present study performed a microarray-based systematic-analysis to determine the transcript levels of thrombospondins and their relation to the prognosis in lung cancer. THBS1 was in general underexpressed in lung cancer; in contrast, mRNA levels of THBS2 were markedly overexpressed in a number of datasets of non-small cell lung carcinoma (NSCLC), including lung adenocarcinoma (AC) and squamous cell carcinoma. Similar expression pattern of THBS1 and THBS2 was verified in pulmonary AC cell lines with real-time PCR analysis. The survival of lung AC patients with high THBS2 mRNA expression levels was poorer than patients with low levels of expression of THBS2. In a microarray-based analysis, genes coexpressed with THBS1 or THBS2 were determined. Pulmonary AC patients with a high expression level of sevenTSHB1-coexpressed genes (CCL5, CDH11, FYB, GZMK, LA-DQA1, PDE4DIP, and SELL) had better survival rates than those with a low expression level. Patients with a high expression of seven TSHB2-coexpressed genes (CHI3L1, COL5A2, COL11A1, FAP, MXRA5, THY1, and VCAN) had poor survival rates. Downregulation of VCAN and THBS2 with shRNA inhibited the cell proliferation in the A549 cell line. In summary, THBS1 functions as a tumor suppressor in lung adenocarcinoma. However, THBS2 may play a double-edged role in the progression of lung AC, i.e. anti-angiogenic and oncogenic function. Further study on the mechanism underlying the activity of THBS2 is warranted to have further implications for cancer diagnosis and treatment of pulmonary AC.


Scientific Reports | 2017

Mucin 2 silencing promotes colon cancer metastasis through interleukin-6 signaling

Hui Ping Hsu; Ming Derg Lai; Jenq Chang Lee; Meng Chi Yen; Tzu Yang Weng; Wei Ching Chen; Jung Hua Fang; Yi Ling Chen

Downregulation of Mucin 2 (MUC2) expression is associated with early carcinogenesis events in colon cancer. MUC2 plays a role in the progression of colon cancer, and reduced MUC2 protein expression correlates with increased interleukin-6 (IL-6) expression. However, the interaction between MUC2 and IL-6 in colorectal cancer metastasis remains unclear. We systematically analyzed MUC2 and IL-6 expression and determined the survival of cancer patients with high or low MUC2 and IL-6 expression using the Oncomine and PrognoScan databases, respectively. This analysis identified downregulation of MUC2 and overexpression of IL-6 in colon cancer but not in normal colon tissue, and this expression pattern was correlated with poor survival of colon cancer patients. We examined the effects of MUC2 on colon cancer metastasis and used vector-mediated application of short hairpin RNA (shRNA) to suppress MUC2 expression. MUC2 suppressed the migration of colon cancer cells in vitro and dramatically diminished liver metastases in vivo. Treatment with IL-6 increased signal transducer and activator of transcription 3 (STAT3) phosphorylation, promoted checkpoint kinase 2 (Chk2) activation, attenuated cAMP response element-binding protein (CREB) phosphorylation, and suppressed E-cadherin protein expression in MUC2-silenced HT-29 cancer cells. Most importantly, MUC2 is a potential prognostic indicator for colon cancer.


International Journal of Oncology | 2016

Cancer stem cell marker CD90 inhibits ovarian cancer formation via β3 integrin

Wei Ching Chen; Hui Ping Hsu; Chung Yen Li; Ya Ju Yang; Yu Hsuan Hung; Chien Yu Cho; Chih Yang Wang; Tzu Yang Weng; Ming Derg Lai

Cancer stem cell (CSC) markers have been identified for CSC isolation and proposed as therapeutic targets in various types of cancers. CD90, one of the characterized markers in liver and gastric cancer, is shown to promote cancer formation. However, the underexpression level of CD90 in ovarian cancer cells and the evidence supporting the cellular mechanism have not been investigated. In the present study, we found that the DNA copy number of CD90 is correlated with mRNA expression in ovarian cancer tissue and the ovarian cancer patients with higher CD90 have good prognosis compared to the patients with lower CD90. Although the expression of CD90 in human ovarian cancer SKOV3 cells enhances the cell proliferation by MTT and anchorage-dependent growth assay, CD90 inhibits the anchorage-independent growth ability in vitro and tumor formation in vivo. CD90 overexpression suppresses the sphere-forming ability and ALDH activity and enhances the cell apoptosis, indicating that CD90 may reduce the cell growth by the properties of CSC and anoikis. Furthermore, CD90 reduces the expression of other CSC markers, including CD133 and CD24. The inhibition of CD133 is attenuated by the mutant CD90, which is replaced with RLE domain into RLD domain. Importantly, the CD90-regulated inhibition of CD133 expression, anchorage-independent growth and signal transduction of mTOR and AMPK are restored by the β3 integrin shRNA. Our results provide evidence that CD90 mediates the antitumor formation by interacting with β3 integrin, which provides new insight that can potentially be applied in the development of therapeutic strategies in ovarian cancer.

Collaboration


Dive into the Wei Ching Chen's collaboration.

Top Co-Authors

Avatar

Ming Derg Lai

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Chih Yang Wang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Hui Ping Hsu

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Tzu Yang Weng

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Chien Yu Cho

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Meng Chi Yen

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Hau Lun Huang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Yu Hsuan Hung

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Yi Ling Chen

Chia Nan University of Pharmacy and Science

View shared research outputs
Top Co-Authors

Avatar

Yung Sheng Chang

National Cheng Kung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge