Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wei-Feng Xue is active.

Publication


Featured researches published by Wei-Feng Xue.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Nucleation of protein fibrillation by nanoparticles

Sara Linse; Celia Cabaleiro-Lago; Wei-Feng Xue; Iseult Lynch; Stina Lindman; Eva Thulin; Sheena E. Radford; Kenneth A. Dawson

Nanoparticles present enormous surface areas and are found to enhance the rate of protein fibrillation by decreasing the lag time for nucleation. Protein fibrillation is involved in many human diseases, including Alzheimers, Creutzfeld-Jacob disease, and dialysis-related amyloidosis. Fibril formation occurs by nucleation-dependent kinetics, wherein formation of a critical nucleus is the key rate-determining step, after which fibrillation proceeds rapidly. We show that nanoparticles (copolymer particles, cerium oxide particles, quantum dots, and carbon nanotubes) enhance the probability of appearance of a critical nucleus for nucleation of protein fibrils from human β2-microglobulin. The observed shorter lag (nucleation) phase depends on the amount and nature of particle surface. There is an exchange of protein between solution and nanoparticle surface, and β2-microglobulin forms multiple layers on the particle surface, providing a locally increased protein concentration promoting oligomer formation. This and the shortened lag phase suggest a mechanism involving surface-assisted nucleation that may increase the risk for toxic cluster and amyloid formation. It also opens the door to new routes for the controlled self-assembly of proteins and peptides into novel nanomaterials.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly

Wei-Feng Xue; Steve W. Homans; Sheena E. Radford

Self-assembly of misfolded proteins into ordered fibrillar aggregates known as amyloid results in numerous human diseases. Despite an increasing number of proteins and peptide fragments being recognised as amyloidogenic, how these amyloid aggregates assemble remains unclear. In particular, the identity of the nucleating species, an ephemeral entity that defines the rate of fibril formation, remains a key outstanding question. Here, we propose a new strategy for analyzing the self-assembly of amyloid fibrils involving global analysis of a large number of reaction progress curves and the subsequent systematic testing and ranking of a large number of possible assembly mechanisms. Using this approach, we have characterized the mechanism of the nucleation-dependent formation of β2-microglobulin (β2m) amyloid fibrils. We show, by defining nucleation in the context of both structural and thermodynamic aspects, that a model involving a structural nucleus size approximately the size of a hexamer is consistent with the relatively small concentration dependence of the rate of fibril formation, contrary to expectations based on simpler theories of nucleated assembly. We also demonstrate that fibril fragmentation is the dominant secondary process that produces higher apparent cooperatively in fibril formation than predicted by nucleated assembly theories alone. The model developed is able to explain and predict the behavior of β2m fibril formation and provides a rationale for explaining generic properties observed in other amyloid systems, such as fibril growth acceleration and pathway shifts under agitation.


Journal of Biological Chemistry | 2009

Fibril Fragmentation Enhances Amyloid Cytotoxicity

Wei-Feng Xue; Andrew L. Hellewell; Walraj S. Gosal; Steve W. Homans; Eric W. Hewitt; Sheena E. Radford

Fibrils associated with amyloid disease are molecular assemblies of key biological importance, yet how cells respond to the presence of amyloid remains unclear. Cellular responses may not only depend on the chemical composition or molecular properties of the amyloid fibrils, but their physical attributes such as length, width, or surface area may also play important roles. Here, we report a systematic investigation of the effect of fragmentation on the structural and biological properties of amyloid fibrils. In addition to the expected relationship between fragmentation and the ability to seed, we show a striking finding that fibril length correlates with the ability to disrupt membranes and to reduce cell viability. Thus, despite otherwise unchanged molecular architecture, shorter fibrillar samples show enhanced cytotoxic potential than their longer counterparts. The results highlight the importance of fibril length in amyloid disease, with fragmentation not only providing a mechanism by which fibril load can be rapidly increased but also creating fibrillar species of different dimensions that can endow new or enhanced biological properties such as amyloid cytotoxicity.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Direct three-dimensional visualization of membrane disruption by amyloid fibrils

Lilia Milanesi; Tania Sheynis; Wei-Feng Xue; Elena V. Orlova; Andrew L. Hellewell; Raz Jelinek; Eric W. Hewitt; Sheena E. Radford; Helen R. Saibil

Protein misfolding and aggregation cause serious degenerative conditions such as Alzheimer’s, Parkinson, and prion diseases. Damage to membranes is thought to be one of the mechanisms underlying cellular toxicity of a range of amyloid assemblies. Previous studies have indicated that amyloid fibrils can cause membrane leakage and elicit cellular damage, and these effects are enhanced by fragmentation of the fibrils. Here we report direct 3D visualization of membrane damage by specific interactions of a lipid bilayer with amyloid-like fibrils formed in vitro from β2-microglobulin (β2m). Using cryoelectron tomography, we demonstrate that fragmented β2m amyloid fibrils interact strongly with liposomes and cause distortions to the membranes. The normally spherical liposomes form pointed teardrop-like shapes with the fibril ends seen in proximity to the pointed regions on the membranes. Moreover, the tomograms indicated that the fibrils extract lipid from the membranes at these points of distortion by removal or blebbing of the outer membrane leaflet. Tiny (15–25 nm) vesicles, presumably formed from the extracted lipids, were observed to be decorating the fibrils. The findings highlight a potential role of fibrils, and particularly fibril ends, in amyloid pathology, and report a previously undescribed class of lipid–protein interactions in membrane remodelling.


ACS Synthetic Biology | 2014

Solution Structure of a Bacterial Microcompartment Targeting Peptide and Its Application in the Construction of an Ethanol Bioreactor

Andrew D. Lawrence; Stefanie Frank; Sarah Newnham; Matthew J. Lee; Ian R. Brown; Wei-Feng Xue; Michelle L. Rowe; Daniel P. Mulvihill; Michael B. Prentice; Mark J. Howard; Martin J. Warren

Targeting of proteins to bacterial microcompartments (BMCs) is mediated by an 18-amino-acid peptide sequence. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome from Citrobacter freundii. The solution structure reveals the peptide to have a well-defined helical conformation along its whole length. Saturation transfer difference and transferred NOE NMR has highlighted the observed interaction surface on the peptide with its main interacting shell protein, PduK. By tagging both a pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides, it has been possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. Not only are the purified, redesigned BMCs able to transform pyruvate into ethanol efficiently, but the strains containing the modified BMCs produce elevated levels of alcohol.


Prion | 2010

Fibril fragmentation in amyloid assembly and cytotoxicity: When size matters

Wei-Feng Xue; Andrew L. Hellewell; Eric W. Hewitt; Sheena E. Radford

Amyloid assemblies are associated with several debilitating human disorders. Understanding the intra- and extracellular assembly of normally soluble proteins and peptides into amyloid aggregates and how they disrupt normal cellular functions is therefore of paramount importance. In a recent report, we demonstrated a striking relationship between reduced fibril length caused by fibril fragmentation and enhanced ability of fibril samples to disrupt membranes and to reduce cell viability. These findings have important implications for our understanding of amyloid disease in that changes in the physical dimensions of fibrils, without parallel changes in their composition or molecular architecture, could be sufficient to alter the biological responses to their presence. These conclusions provide a new hypothesis that the physical dimensions and surface interactions of fibrils play key roles in amyloid disease. Controlling fibril length and stability toward fracturing, and thereby the biological availability of fibril material, may provide a new target for future therapeutic strategies towards combating amyloid disease.


Protein Engineering Design & Selection | 2009

Amyloid fibril length distribution quantified by atomic force microscopy single-particle image analysis

Wei-Feng Xue; Steve W. Homans; Sheena E. Radford

Amyloid fibrils are proteinaceous nano-scale linear aggregates. They are of key interest not only because of their association with numerous disorders, such as type II diabetes mellitus, Alzheimers and Parkinsons diseases, but also because of their potential to become engineered high-performance nano-materials. Methods to characterise the length distribution of nano-scale linear aggregates such as amyloid fibrils are of paramount importance both in understanding the biological impact of these aggregates and in controlling their mechanical properties as potential nano-materials. Here, we present a new quantitative approach to the determination of the length distribution of amyloid fibrils using tapping-mode atomic force microscopy. The method described employs single-particle image analysis corrected for the length-dependent bias that is a common problem associated with surface-based imaging techniques. Applying this method, we provide a detailed characterisation of the length distribution of samples containing long-straight fibrils formed in vitro from β2-microglobulin. The results suggest that the Weibull distribution is a suitable model in describing fibril length distributions, and reveal that fibril fragmentation is an important process even under unagitated conditions. These results demonstrate the significance of quantitative length distribution measurements in providing important new information regarding amyloid assembly.


Prion | 2014

The relationship between amyloid structure and cytotoxicity.

Karen E. Marshall; Ricardo Marchante; Wei-Feng Xue; Louise C. Serpell

Self-assembly of proteins and peptides into amyloid structures has been the subject of intense and focused research due to their association with neurodegenerative, age-related human diseases and transmissible prion diseases in humans and mammals. Of the disease associated amyloid assemblies, a diverse array of species, ranging from small oligomeric assembly intermediates to fibrillar structures, have been shown to have toxic potential. Equally, a range of species formed by the same disease associated amyloid sequences have been found to be relatively benign under comparable monomer equivalent concentrations and conditions. In recent years, an increasing number of functional amyloid systems have also been found. These developments show that not all amyloid structures are generically toxic to cells. Given these observations, it is important to understand why amyloid structures may encode such varied toxic potential despite sharing a common core molecular architecture. Here, we discuss possible links between different aspects of amyloidogenic structures and assembly mechanisms with their varied functional effects. We propose testable hypotheses for the relationship between amyloid structure and its toxic potential in the context of recent reports on amyloid sequence, structure, and toxicity relationships.


Proteins | 2004

Multi-method global analysis of thermodynamics and kinetics in reconstitution of monellin

Wei-Feng Xue; Jannette Carey; Sara Linse

Accurate and precise determinations of thermodynamic parameters of binding are important steps toward understanding many biological mechanisms. Here, a multi‐method approach to binding analysis is applied and a detailed error analysis is introduced. Using this approach, the binding thermodynamics and kinetics of the reconstitution of the protein monellin have been quantitatively determined in detail by simultaneous analysis of data collected with fluorescence spectroscopy, surface plasmon resonance and isothermal titration calorimetry at 25°C, pH 7.0 and 150 mM NaCl. Monellin is an intensely sweet protein composed of two peptide chains that form a single globular domain. The kinetics of the reconstitution reaction are slow, with an association rate constant, kon of 8.8 × 103 M−1 s−1 and a dissociation rate constant, koff of 3.1 × 10−4 s−1. The equilibrium constant KA is 2.8 × 107 M−1 corresponding to a standard free energy of association, ΔG°, of −42.5 kJ/mol. The enthalpic component, ΔH°, is −18.7 kJ/mol and the entropic contribution, ΔS°, is 79.8 J mol−1 K−1 (−TΔS° = −23.8 kJ/mol). The association of monellin is therefore a bimolecular intra‐protein association whose energetics are slightly dominated by entropic factors. Proteins 2004.


Biochimica et Biophysica Acta | 2009

Role of protein surface charge in monellin sweetness.

Wei-Feng Xue; Olga Szczepankiewicz; Eva Thulin; Sara Linse; Jannette Carey

A small number of proteins have the unusual property of tasting intensely sweet. Despite many studies aimed at identifying their sweet taste determinants, the molecular basis of protein sweetness is not fully understood. Recent mutational studies of monellin have implicated positively charged residues in sweetness. In the present work, the effect of overall net charge was investigated using the complementary approach of negative charge alterations. Multiple substitutions of Asp/Asn and Glu/Gln residues radically altered the surface charge of single-chain monellin by removing six negative charges or adding four negative charges. Biophysical characterization using circular dichroism, fluorescence, and two-dimensional NMR demonstrates that the native fold of monellin is preserved in the variant proteins under physiological solution conditions although their stability toward chemical denaturation is altered. A human taste test was employed to determine the sweetness detection threshold of the variants. Removal of negative charges preserves monellin sweetness, whereas added negative charge has a large negative impact on sweetness. Meta-analysis of published charge variants of monellin and other sweet proteins reveals a general trend toward increasing sweetness with increasing positive net charge. Structural mapping of monellin variants identifies a hydrophobic surface predicted to face the receptor where introduced positive or negative charge reduces sweetness, and a polar surface where charges modulate long-range electrostatic complementarity.

Collaboration


Dive into the Wei-Feng Xue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge