Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wei-Min Wu is active.

Publication


Featured researches published by Wei-Min Wu.


The ISME Journal | 2007

GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes

Zhili He; Terry J Gentry; Christopher W. Schadt; Liyou Wu; Jost Liebich; Song C. Chong; Zhijian Huang; Wei-Min Wu; Baohua Gu; P. M. Jardine; Craig S. Criddle; Jizhong Zhou

Owing to their vast diversity and as-yet uncultivated status, detection, characterization and quantification of microorganisms in natural settings are very challenging, and linking microbial diversity to ecosystem processes and functions is even more difficult. Microarray-based genomic technology for detecting functional genes and processes has a great promise of overcoming such obstacles. Here, a novel comprehensive microarray, termed GeoChip, has been developed, containing 24 243 oligonucleotide (50 mer) probes and covering >10 000 genes in >150 functional groups involved in nitrogen, carbon, sulfur and phosphorus cycling, metal reduction and resistance, and organic contaminant degradation. The developed GeoChip was successfully used for tracking the dynamics of metal-reducing bacteria and associated communities for an in situ bioremediation study. This is the first comprehensive microarray currently available for studying biogeochemical processes and functional activities of microbial communities important to human health, agriculture, energy, global climate change, ecosystem management, and environmental cleanup and restoration. It is particularly useful for providing direct linkages of microbial genes/populations to ecosystem processes and functions.


Bioresource Technology | 2011

Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

Aijie Wang; Dan Sun; Guang-Li Cao; Haoyu Wang; Nanqi Ren; Wei-Min Wu; Bruce E. Logan

Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m(3) H(2)/m(3)/d (based on the MEC volume), and a yield of 33.2 mmol H(2)/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H(2)/g cellulose, with a total hydrogen production rate of 0.24 m(3) H(2)/m(3)/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input.


Applied and Environmental Microbiology | 2008

Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels.

Erick Cardenas; Wei-Min Wu; Mary Beth Leigh; Jack Carley; Sue L. Carroll; Terry J. Gentry; Jian Luo; David B. Watson; Baohua Gu; Matthew Ginder-Vogel; Peter K. Kitanidis; Philip M. Jardine; Jizhong Zhou; Craig S. Criddle; Terence L. Marsh; James M. Tiedje

ABSTRACT Microbial enumeration, 16S rRNA gene clone libraries, and chemical analysis were used to evaluate the in situ biological reduction and immobilization of uranium(VI) in a long-term experiment (more than 2 years) conducted at a highly uranium-contaminated site (up to 60 mg/liter and 800 mg/kg solids) of the U.S. Department of Energy in Oak Ridge, TN. Bioreduction was achieved by conditioning groundwater above ground and then stimulating growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria in situ through weekly injection of ethanol into the subsurface. After nearly 2 years of intermittent injection of ethanol, aqueous U levels fell below the U.S. Environmental Protection Agency maximum contaminant level for drinking water and groundwater (<30 μg/liter or 0.126 μM). Sediment microbial communities from the treatment zone were compared with those from a control well without biostimulation. Most-probable-number estimations indicated that microorganisms implicated in bioremediation accumulated in the sediments of the treatment zone but were either absent or in very low numbers in an untreated control area. Organisms belonging to genera known to include U(VI) reducers were detected, including Desulfovibrio, Geobacter, Anaeromyxobacter, Desulfosporosinus, and Acidovorax spp. The predominant sulfate-reducing bacterial species were Desulfovibrio spp., while the iron reducers were represented by Ferribacterium spp. and Geothrix spp. Diversity-based clustering revealed differences between treated and untreated zones and also within samples of the treated area. Spatial differences in community structure within the treatment zone were likely related to the hydraulic pathway and to electron donor metabolism during biostimulation.


Environmental Science & Technology | 2013

Accelerated Reduction of Chlorinated Nitroaromatic Antibiotic Chloramphenicol by Biocathode

Bin Liang; Hao-Yi Cheng; Deyong Kong; Shu-Hong Gao; Fei Sun; Dan Cui; Fanying Kong; Aijuan Zhou; Wenzong Liu; Nanqi Ren; Wei-Min Wu; Aijie Wang; Duu-Jong Lee

Chlorinated nitroaromatic antibiotic chloramphenicol (CAP) is a priority pollutant in wastewaters. A fed-batch bioelectrochemical system (BES) with biocathode with applied voltage of 0.5 V (served as extracellular electron donor) and glucose as intracellular electron donor was applied to reduce CAP to amine product (AMCl2). The biocathode BES converted 87.1 ± 4.2% of 32 mg/L CAP in 4 h, and the removal efficiency reached 96.0 ± 0.9% within 24 h. Conversely, the removal efficiency of CAP in BES with an abiotic cathode was only 73.0 ± 3.2% after 24 h. When the biocathode was disconnected (no electrochemical reaction but in the presence of microbial activities), the CAP removal rate was dropped to 62.0% of that with biocathode BES. Acetylation of one hydroxyl of CAP was noted exclusive in the biocatalyzed process, while toxic intermediates, hydroxylamino (HOAM), and nitroso (NO), from CAP reduction were observed only in the abiotic cathode BES. Electrochemical hydrodechlorination and dehalogenase were responsible for dechlorination of AMCl2 to AMCl in abiotic and microbial cathode BES, respectively. The cyclic voltammetry (CV) highlighted higher peak currents and lower overpotentials for CAP reduction at the biocathode compared with abiotic cathode. With the biocathode BES, antibacterial activity of CAP was completely removed and nitro group reduction combined with dechlorination reaction enhanced detoxication efficiency of CAP. The CAP cathodic transformation pathway was proposed based on intermediates analysis. Bacterial community analysis indicated that the dominate bacteria on the biocathode were belonging to α, β, and γ-Proteobacteria. The biocathode BES could serve as a potential treatment process for CAP-containing wastewater.


Journal of Hazardous Materials | 2011

Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.

Hu-Chun Tao; Min Liang; Wei Li; Li-Juan Zhang; Jinren Ni; Wei-Min Wu

Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu(2)O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1L) with different concentrations of CuSO(4) solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu(2+)/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m(3) at an initial 6412.5 ± 26.7 mg Cu(2+)/L concentration. High Cu(2+) removal efficiency (>99%) and final Cu(2+) concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3mg/L) was observed at an initial 196.2 ± 0.4 mg Cu(2+)/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu(2+) was reduced to cuprous oxide (Cu(2)O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu(2+) concentration (0.1M) but not in the others. The sustainability of high Cu(2+) removal (>96%) by MFC was further examined by fed-batch mode for eight cycles.


The ISME Journal | 2009

Bacterial community succession during in situ uranium bioremediation: spatial similarities along controlled flow paths

Chiachi Hwang; Wei-Min Wu; Terry J Gentry; Jack Carley; Gail A Corbin; Sue L. Carroll; David B. Watson; P. M. Jardine; Jizhong Zhou; Craig S. Criddle; Matthew W. Fields

Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5-year period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate and ethanol were strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate reducers and metal reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared with the population variation through canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bioreduction; however, the two biostimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.


Applied and Environmental Microbiology | 2010

Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach

Erick Cardenas; Wei-Min Wu; Mary Beth Leigh; Jack Carley; Sue L. Carroll; Terry J. Gentry; Jian Luo; David B. Watson; Baohua Gu; Matthew Ginder-Vogel; Peter K. Kitanidis; Philip M. Jardine; Jizhong Zhou; Craig S. Criddle; Terence L. Marsh; James M. Tiedje

ABSTRACT Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.


Applied and Environmental Microbiology | 2011

A Limited Microbial Consortium Is Responsible for Extended Bioreduction of Uranium in a Contaminated Aquifer

Thomas M. Gihring; Gengxin Zhang; Craig C. Brandt; Scott C. Brooks; James H. Campbell; Susan L. Carroll; Craig S. Criddle; Stefan J. Green; P. M. Jardine; Joel E. Kostka; Kenneth Lowe; Tonia L. Mehlhorn; Will A. Overholt; David B. Watson; Zamin Yang; Wei-Min Wu; Christopher W. Schadt

ABSTRACT Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H2 production during EVO degradation appeared to stimulate NO3 −, Fe(III), U(VI), and SO4 2− reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.


Bioresource Technology | 2014

Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.

Chongyang Gao; Aijie Wang; Wei-Min Wu; Yalin Yin; Yangguo Zhao

Aerobic sludge after anaerobic pretreatment and anaerobic sludge were separately used as inoculum to start up air-cathode single-chamber MFCs. Aerobic sludge-inoculated MFCs arrived at 0.27 V with a maximum power density of 5.79 W m(-3), while anaerobic sludge-inoculated MFCs reached 0.21 V with 3.66 W m(-3). Microbial analysis with DGGE profiling and high-throughput sequencing indicated that aerobic sludge contained more diverse bacterial populations than anaerobic sludge. Nitrospira species dominated in aerobic sludge, while anaerobic sludge was dominated by Desulfurella and Acidithiobacillus species. Microbial community structure and composition in anodic biofilms enriched, respectively from aerobic and anaerobic sludges tended gradually to be similar. Potentially exoelectrogenic Geobacter and Anaeromusa species, biofilm-forming Zoogloea and Acinetobacter species were abundant in both anodic biofilms. This study indicated that aerobic sludge performed better for MFCs startup, and the enrichment of anodic microbial consortium with different inocula but same substrate resulted in uniformity of functional microbial communities.


Environmental Science & Technology | 2013

In Situ Bioremediation of Uranium with Emulsified Vegetable Oil as the Electron Donor

David B. Watson; Wei-Min Wu; Tonia L. Mehlhorn; Guoping Tang; Jennifer E. Earles; Kenneth Lowe; Thomas M. Gihring; Gengxin Zhang; Jana Randolph Phillips; Maxim I. Boyanov; Brian Patrick Spalding; Christopher W. Schadt; Kenneth M. Kemner; Craig S. Criddle; Philip M. Jardine; Scott C. Brooks

A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.

Collaboration


Dive into the Wei-Min Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Watson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Philip M. Jardine

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Carley

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Baohua Gu

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Luo

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tonia L. Mehlhorn

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge