Wei Ouyang
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wei Ouyang.
AIP Advances | 2017
Lingyan Gong; Wei Ouyang; Zirui Li; Jongyoon Han
Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.
Journal of Membrane Science | 2018
Lingyan Gong; Wei Ouyang; Zirui Li; Jongyoon Han
A novel ion concentration polarization-based microfluidic device is proposed for continuous extraction of Li+ from high Mg2+/Li+ ratio brines. With simultaneous application of the cross-channel voltage that drives electroosmotic flow and the cross-membrane voltage that induces ion depletion, Li+ is concentrated much more than other cations in front of the membrane in the microchannel. The application of external pressure produces a fluid flow that drags a portion of Li+ (and Na+) to flow through the microchannel, while keeping most of Mg2+ (and K+) blocked, thus implementing continuous Li+ extraction. Two-dimensional numerical simulation using a microchannel of 120 µm length and 4 µm height and a model, highly concentrated brine, shows that the system may produce a continuous flow rate of 1.72 mm/s, extracting 25.6% of Li+, with a Li+/Mg2+ flux ratio of 2.81×103, at a pressure of 100 Pa and cross-membrane voltage of 100 times of thermal voltages (25.8 mV). Fundamental mechanisms of the system are elaborated and effects of the cross-membrane voltage and the external pressure are analyzed. These results and findings provide clear guidance for the understanding and designing of microfluidic devices not only for Li+ extraction, but also for other ionic or molecular separations.
Analytical Chemistry | 2018
Wei Ouyang; Zirui Li; Jongyoon Han
Micro total-analysis systems (μTAS) have been extensively developed for the detection of nucleic acids (NAs) in resource-limited settings in recent years, yet the sample-preparation steps that interface real-world samples with on-chip analytics remain as the technical bottleneck. We report pressure-modulated selective electrokinetic trapping (PM-SET) for the direct enrichment, purification, and detection of NAs in human serum in one step without involving tedious solid-phase extraction, chemical amplification, and surface-hybridization-based assays. Under appropriately modulated hydrostatic pressures, NAs in human serum were selectively enriched in an electrokinetic concentrator with the majority of background proteins removed, achieving an enrichment factor of >4800 in 15 min. A sequence-specific NA was detected simultaneously during the enrichment process using a complementary morpholino (MO) probe, realizing a limit of detection of 3 pM in 15 min. PM-SET greatly reduces the cost, time, and complexity of sample preparation for NA detection and could be easily interfaced with existing NA-detection devices to achieve true sample-to-answer biomolecular analytics.
Analytical Chemistry | 2016
Wei Ouyang; Sung Hee Ko; Di Wu; Annie Yu Wang; Paul W. Barone; William S. Hancock; Jongyoon Han
Nature Nanotechnology | 2017
Sung Hee Ko; Divya Chandra; Wei Ouyang; Taehong Kwon; Pankaj Karande; Jongyoon Han
Lab on a Chip | 2017
Wei Ouyang; Jongyoon Han; Wei Wang
Lab on a Chip | 2017
Wei Ouyang; Jongyoon Han; Wei Wang
arXiv: Fluid Dynamics | 2018
Wei Ouyang; Zirui Li; Xinghui Ye; Jongyoon Han
The Royal Society of Chemistry | 2018
Xinghui Ye; Wei Ouyang; Zirui Li; Jongyoon Han
Archive | 2016
Wei Ouyang; Jongyoon Han