Wei-Zheng Zhang
Baker IDI Heart and Diabetes Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wei-Zheng Zhang.
Hypertension | 2006
Wei-Zheng Zhang; Kylie Venardos; Jaye Chin-Dusting; David M. Kaye
Endothelial dysfunction is a hallmark of cardiovascular disease, and the l-arginine:NO pathway plays a critical role in determining endothelial function. Recent studies suggest that smoking, a well-recognized risk factor for vascular disease, may interfere with l-arginine and NO metabolism; however, this remains poorly characterized. Accordingly, we performed a series of complementary in vivo and in vitro studies to elucidate the mechanism by which cigarette smoke adversely affects endothelial function. In current smokers, plasma levels of asymmetrical dimethyl-arginine (ADMA) were 80% higher (P=0.01) than nonsmokers, whereas citrulline (17%; P<0.05) and N-hydroxy-l-arginine (34%; P<0.05) were significantly lower. Exposure to 10% cigarette smoke extract (CSE) significantly affected endothelial arginine metabolism with reductions in the intracellular content of citrulline (81%), N-hydroxy-l-arginine (57%), and arginine (23%), while increasing ADMA (129%). CSE significantly inhibited (38%) arginine uptake in conjunction with a 34% reduction in expression of the arginine transporter, CAT1. In conjunction with these studies, CSE significantly reduced the activity of eNOS and NO production by endothelial cells, while stimulating the production of reactive oxygen species. In conclusion, cigarette smoke adversely affects the endothelial l-arginine NO synthase pathway, resulting in reducing NO production and elevated oxidative stress. In conjunction, exposure to cigarette smoke increases ADMA concentration, the latter being a risk factor for cardiovascular disease.
Circulation | 2004
Markus P. Schlaich; Melinda M. Parnell; Belinda A. Ahlers; Samara Finch; Tanneale Marshall; Wei-Zheng Zhang; David M. Kaye
Background—Impaired endothelium-dependent NO-mediated vasodilation is a key feature of essential hypertension and may precede the increase in blood pressure. We investigated whether transport of the NO precursor l-arginine is related to decreased endothelial function. Methods and Results—Radiotracer kinetics ([3H]l-arginine) were used to measure forearm and peripheral blood mononuclear cell arginine uptake in hypertensive subjects (n=12) and in 2 groups of healthy volunteers with (n=15) and without (n=15) a family history of hypertension. In conjunction, forearm blood flow responses to acetylcholine and sodium nitroprusside were measured before and after a supplemental intra-arterial infusion of l-arginine. In vivo and in vitro measures of l-arginine transport were substantially reduced in the essential hypertension and positive family history groups compared with the negative family history group; however, no difference was detected in peripheral blood mononuclear cell mRNA or protein expression levels for the cationic amino acid transporter CAT-1. Plasma concentrations of l-arginine and NG,NG′-dimethylarginine (ADMA) did not differ between groups. l-Arginine supplementation improved the response to acetylcholine only in subjects with essential hypertension and positive family history. Conclusions—Similar to their hypertensive counterparts, normotensive individuals at high risk for the development of hypertension are characterized by impaired l-arginine transport, which may represent the link between a defective l-arginine/NO pathway and the onset of essential hypertension. The observed transport defect is not due to apparent alterations in CAT-1 expression or elevated endogenous ADMA.
PLOS ONE | 2013
Niwanthi W. Rajapakse; Abigail L. Chong; Wei-Zheng Zhang; David M. Kaye
Aims/Hypothesis Impaired L-arginine transport has been reported in cardiovascular diseases, providing a possible mechanism for reduced nitric oxide (NO) production. Given that cardiovascular diseases are also associated with insulin resistance, and insulin is known to induce vasodilation via a NO-dependent pathway, we hypothesised that abnormal insulin modulation of L-arginine transport may contribute to vascular dysfunction in diabetes. Methods Forearm blood flow (FBF) responses to insulin and sodium nitroprusside (SNP) were measured in control and type 2 diabetic volunteers using venous occlusion plethysmography. Effects of intra-arterial insulin on the forearm veno-arterial flux of arginine and related amino acids were determined by HPLC. The effect of locally delivered insulin on arginine transport was assessed during an intra-arterial infusion of [4,5-3H] L-arginine. Results In controls, intrabrachial infusion of 5 mUnits/min insulin lead to a progressive rise in FBF (p<0.001) while this was not evident in diabetics. In support of this observation, we observed a concomitant, significant increase in the flux of N-hydroxy-L-arginine (the NO precursor) in controls (baseline vs. 60 mins insulin: 16.2±12.2 vs. 33.0±13.1 nmol/100 ml tissue/min; p<0.01), whilst no increase was observed in diabetics. Moreover, insulin augmented the clearance of [3H]L-arginine from the forearm circulation in controls (baseline vs insulin: 123±22 vs. 150±28 ml/min; p<0.05) but not in diabetics. Conclusion These findings suggest that insulin resistance may contribute substantially to the onset and development of cardiovascular disease in type 2 diabetics via abnormal insulin-mediated regulation of L-arginine transport.
The International Journal of Biochemistry & Cell Biology | 2009
K. Venardos; Wei-Zheng Zhang; Charles H. Lang; David M. Kaye
Under conditions of oxidative stress it is well known that the bioavailability of nitric oxide (NO) is known to be significantly reduced. This process is in part due to the combination of NO with superoxide radicals to form peroxynitrite (ONOO(-)). While this process inactivates NO per se, it is not certain to which extent this process may also further impair ongoing NO production. Given the pivotal role of arginine availability for NO synthesis we determined the impact of ONOO(-) on endothelial arginine transport and intracellular arginine metabolism. Peroxynitrite reduced endothelial [(3)H]-L-arginine transport and increased the rate of arginine efflux in a concentration-dependent manner (both p<0.05). In conjunction, exposure to ONOO(-) significantly reduced the intracellular concentration of L-arginine, N(G)-hydroxy-L-arginine (an intermediate of NO biosynthesis) and citrulline by 46%, 45% and 60% respectively (all p<0.05), while asymmetric dimethyl arginine (ADMA) levels rose by 180% (p<0.05). ONOO(-) exposure did not alter the cellular distribution of the principal L-arginine transporter, CAT1, rather the effect on CAT1 activity appeared to be mediated by protein nitrosation. Conclusion Peroxynitrite negatively influences NO production by combined effects on arginine uptake and efflux, most likely due to a nitrosative action of ONOO(-) on CAT-1.
Analytical Biochemistry | 2004
Wei-Zheng Zhang; David M Kaye
Biomedical Chromatography | 2007
Wei-Zheng Zhang; Charles H. Lang; David M. Kaye
The International Journal of Biochemistry & Cell Biology | 2008
Wei-Zheng Zhang; Kylie Venardos; Samara Finch; David M. Kaye
The International Journal of Biochemistry & Cell Biology | 2008
Wei-Zheng Zhang; Kylie Venardos; Samara Finch; David M. Kaye
Hypertension | 2006
Wei-Zheng Zhang; Kylie Venardos; Jaye Chin-Dusting; David M. Kaye
Heart Lung and Circulation | 2007
Wei-Zheng Zhang; Charles H. Lang; David M. Kaye