Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weibin Chen is active.

Publication


Featured researches published by Weibin Chen.


mAbs | 2010

Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies

Hongwei Xie; Asish B. Chakraborty; Joomi Ahn; Ying Qing Yu; Deepalakshmi P. Dakshinamoorthy; Martin Gilar; Weibin Chen; St. John Skilton; Jeffery R. Mazzeo

This study shows that state-of-the-art liquid chromatography (LC) and mass spectrometry (MS) can be used for rapid verification of identity and characterization of sequence variants and posttranslational modifications (PTMs) for antibody products. A candidate biosimilar IgG1 monoclonal antibody (mAb) was compared in detail to a commercially available innovator product. Intact protein mass, primary sequence, PTMs, and the micro-differences between the two mAbs were identified and quantified simultaneously. Although very similar in terms of sequences and modifications, a mass difference observed by LC-MS intact mass measurements indicated that they were not identical. Peptide mapping, performed with data independent acquisition LC-MS using an alternating low and elevated collision energy scan mode (LC-MSE), located the mass difference between the biosimilar and the innovator to a two amino acid residue variance in the heavy chain sequences. The peptide mapping technique was also used to comprehensively catalogue and compare the differences in PTMs of the biosimilar and innovator mAbs. Comprehensive glycosylation profiling confirmed that the proportion of individual glycans was different between the biosimilar and the innovator, although the number and identity of glycans were the same. These results demonstrate that the combination of accurate intact mass measurement, released glycan profiling, and LC-MSE peptide mapping provides a set of routine tools that can be used to comprehensively compare a candidate biosimilar and an innovator mAb.


Journal of the American Society for Mass Spectrometry | 2009

Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab.

Carola W.N. Damen; Weibin Chen; Asish B. Chakraborty; Mike van Oosterhout; Jeffrey R. Mazzeo; John C. Gebler; Jan H. M. Schellens; Hilde Rosing; Jos H. Beijnen

Monoclonal antibodies are typically glycosylated at asparagine residues in the Fc domain, and glycosylation heterogeneity at the Fc sites is well known. This paper presents a method for rapid analysis of glycosylation profile of the therapeutic monoclonal antibody trastuzumab from different production batches using electrospray quadrupole ion-mobility time-of-flight mass spectrometry (ESI-Q-IM-TOF). The global glycosylation profile for each production batch was obtained by a fast LC-MS analysis, and comparisons of the glycoprofiles of trastuzumab from different lots were made based on the deconvoluted intact mass spectra. Furthermore, the heterogeneity at each glycosylation site was characterized at the reduced antibody level and at the isolated glycopeptide level. The glycosylation site and glycan structures were confirmed by performing a time-aligned-parallel fragmentation approach using the unique dual-collision cell design of the instrument and the incorporated ion-mobility separation function. Four different production batches of trastuzumab were analyzed and compared in terms of global glycosylation profiles as well as the heterogeneity at each glycosylation site. The results show that each batch of trastuzumab shares the same types of glycoforms but relative abundance of each glycoforms is varied.


mAbs | 2012

Analysis of host-cell proteins in biotherapeutic proteins by comprehensive online two-dimensional liquid chromatography/mass spectrometry

Catalin E. Doneanu; Alex Xenopoulos; Keith Fadgen; Jim Murphy; St. John Skilton; Holly Prentice; Martha Stapels; Weibin Chen

Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a “discovery” assay, the latter as a “monitoring” assay. Purified biotherapeutic proteins (e.g., monoclonal antibodies) were digested with trypsin after reduction and alkylation, and the digests were fractionated using reversed-phase (RP) chromatography at high pH (pH 10) by a step gradient in the first dimension, followed by a high-resolution separation at low pH (pH 2.5) in the second dimension. As peptides eluted from the second dimension, a quadrupole time-of-flight mass spectrometer was used to detect the peptides and their fragments simultaneously by alternating the collision cell energy between a low and an elevated energy (MSE methodology). The MSE data was used to identify and quantify the proteins in the mixture using a proven label-free quantification technique (“Hi3” method). The same data set was mined to subsequently develop target peptides and transitions for monitoring the concentration of selected HCPs on a triple quadrupole mass spectrometer in a high-throughput manner (20 min LC-MRM analysis). This analytical methodology was applied to the identification and quantification of low-abundance HCPs in six samples of PTG1, a recombinant chimeric anti-phosphotyrosine monoclonal antibody (mAb). Thirty three HCPs were identified in total from the PTG1 samples among which 21 HCP isoforms were selected for MRM monitoring. The absolute quantification of three selected HCPs was undertaken on two different LC-MRM platforms after spiking isotopically labeled peptides in the samples. Finally, the MRM quantitation results were compared with TOF-based quantification based on the Hi3 peptides, and the TOF and MRM data sets correlated reasonably well. The results show that the assays provide detailed valuable information to understand the relative contributions of purification schemes to the nature and concentrations of HCP impurities in biopharmaceutical samples, and the assays can be used as generic methods for HCP analysis in the biopharmaceutical industry.


Analytical Chemistry | 2009

Analysis of Oligosaccharides Derived from Heparin by Ion-Pair Reversed-Phase Chromatography/Mass Spectrometry

Catalin E. Doneanu; Weibin Chen; John C. Gebler

Current chromatographic and mass spectrometric techniques have limitations for analyzing heparin and heparin oligomers due to their high polarity, structural diversity, and sulfate lability. A rapid method for the analysis of heparin oligosaccharides was developed using ion-pair reversed-phase ultraperformance liquid chromatography coupled with electrospray quadruple time-of-flight mass spectrometry (IPRP-UPLC ESI Q-TOF MS). The method utilizes an optimized buffer system containing a linear pentylamine and a unique additive, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), to achieve highly efficient separation together with enhanced mass response of heparin oligosaccharides. Analyses of a heparin oligosaccharide test mixture, dp6 through dp22, reveal that the chromatographic conditions enable baseline resolution of isomeric heparin oligosaccharides (dp6) and produce intact molecular ions with no sulfate losses during mass spectrometric analysis. In addition, the described conditions are amenable to the detection of heparin oligosaccharides in positive ion mode, yield stronger positive ion signals for corresponding oligosaccharides compared to the negative ion mode, and allow identification of structural isomers by an MS/MS approach. Because sensitive detection of oligosaccharides is also achieved with ultraviolet (UV) detection, the method utilizes a dual detection scheme (UV and MS in series) along with IPRP UPLC to simultaneously obtain quantification (UV) and characterization (MS) data for heparin oligosaccharides. The broad potential of this new method is further demonstrated for the analysis of a low-molecular-weight heparin (LMWH) preparation from porcine heparin. This approach will be of particular utility for profiling the molecular entities of heparin materials, as well as for structural variability comparison for samples from various sources.


Analytical Chemistry | 2014

N- and O‑Glycosylation Analysis of Etanercept Using Liquid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry Equipped with Electron-Transfer Dissociation Functionality

Stephane Houel; Mark Hilliard; Ying Qing Yu; Niaobh McLoughlin; Silvia Millán Martín; Pauline M. Rudd; Jonathan P. Williams; Weibin Chen

Etanercept is a highly glycosylated therapeutic Fc-fusion protein that contains multiple N- and O-glycosylation sites. An in-depth characterization of the glycosylation of etanercept was carried out using liquid chromatography/mass spectrometry (LC/MS) methods in a systematic approach in which we analyzed the N- and O-linked glycans and located the occupied O-glycosylation sites. Etanercept was first treated with peptide N-glycosidase F to release the N-glycans. The N-glycan pool was labeled with a 2-aminobenzamide (2-AB) fluorescence tag and separated using ultraperformance liquid chromatography-hydrophilic interaction liquid chromatography (UPLC-HILIC). Preliminary structures were assigned using Glycobase. These assignments, which included monosaccharide sequence and linkage information, were confirmed by exoglycosidase array digestions of aliquots of the N-glycan pool. The removal of the N-glycans from etanercept facilitated the selective characterization of O-glycopeptides and enabled the O-glycans to be identified. These were predominantly of the core 1 subtype (HexHexNAc O-structure) attached to Ser/Thr residues. α2→3,6,8,9 sialidase was used to remove the sialic acid residues on the O-glycans allowing the use of an automated LC/MS(E) protocol to identify the O-glycopeptides. Electron-transfer dissociation (ETD) was then used to pinpoint the 12 occupied O-glycosylation sites. The determination of N- and O-glycans and O-glycosylation sites in etanercept provides a basis for future studies addressing the biological importance of specific protein glycosylations in the production of safe and efficacious biotherapeutics.


mAbs | 2015

A rapid on-line method for mass spectrometric confirmation of a cysteine-conjugated antibody-drug-conjugate structure using multidimensional chromatography.

Robert E. Birdsall; Henry Shion; Frank W. Kotch; April Xu; Thomas J. Porter; Weibin Chen

Cysteine-conjugated antibody-drug conjugates (ADCs) are manufactured using controlled partial reduction and conjugation chemistry with drug payloads that typically occur in intervals of 0, 2, 4, 6, and 8. Control of heterogeneity is of particular importance to the quality of ADC product because drug loading and distribution can affect the safety and efficacy of the ADC. Liquid chromatography ultra-violet (LC-UV)-based methods can be used to acquire the drug distribution profiles of cysteine-conjugated ADCs when analyzed using hydrophobic interaction chromatography (HIC). However, alternative analysis techniques are often required for structural identification when conjugated drugs do not possess discrete ultra-violet absorbance properties for precise assessment of the drug-to-antibody ratio (DAR). In this study, multidimensional chromatography was used as an efficient method for combining non-compatible techniques, such as HIC, with analysis by mass spectrometry (LC/LC/QTOF-MS) for rapid on-line structural elucidation of species observed in HIC distribution profiles of cysteine-conjugated ADCs. The methodology was tested using an IgG1 mAb modified by cysteine conjugation with a non-toxic drug mimic. Structural elucidation of peaks observed in the HIC analysis (1st dimension) were successfully identified based on their unique sub-unit masses via mass spectrometry techniques once dissociation occurred under denaturing reversed phase conditions (2nd dimension). Upon identification, the DAR values were determined to be 2.83, 4.44, and 5.97 for 3 drug load levels (low-, medium-, and high-loaded ADC batches), respectively, based on relative abundance from the LC-UV data. This work demonstrates that multidimensional chromatography coupled with MS, provides an efficient approach for on-line biotherapeutic characterization to ensure ADC product quality.


Analytical Chemistry | 2015

Enhanced Detection of Low-Abundance Host Cell Protein Impurities in High-Purity Monoclonal Antibodies Down to 1 ppm Using Ion Mobility Mass Spectrometry Coupled with Multidimensional Liquid Chromatography

Catalin E. Doneanu; Malcolm Anderson; Brad J. Williams; Matthew A. Lauber; Asish Chakraborty; Weibin Chen

The enormous dynamic range of proteinaceous species present in protein biotherapeutics poses a significant challenge for current mass spectrometry (MS)-based methods to detect low-abundance HCP impurities. Previously, an HCP assay based on two-dimensional chromatographic separation (high pH/low pH) coupled to high-resolution quadrupole time-of-flight (QTOF) mass spectrometry and developed in the authors laboratory has been shown to achieve a detection limit of about 50 ppm (parts per milion) for the identification and quantification of HCPs present in monoclonal antibodies following Protein A purification.1 To improve the HCP detection limit we have explored the utility of several new analytical techniques for HCP analysis and thereby developed an improved liquid chromatography-mass spectrometry (LC-MS) methodology for enhanced detection of HCPs. The new method includes (1) the use of a new charge-surface-modified (CSH) C18 stationary phase to mitigate the challenges of column saturation, peak tailing, and distortion that are commonly observed in the HCP analysis; (2) the incorporation of traveling-wave ion mobility (TWIM) separation of coeluting peptide precursors, and (3) the improvement of fragmentation efficiency of low-abundance HCP peptides by correlating the collision energy used for precursor fragmentation with their mobility drift time. As a result of these improvements, the detection limit of the new methodology was greatly improved, and HCPs present at a concentration as low as 1 ppm (1 ng HCP/mg mAb) were successfully identified and quantified. The newly developed method was applied to analyze two high-purity mAbs (NIST mAb and Infliximab) expressed in a murine cell line. For both samples, low-abundance HCPs (down to 1 ppm) were confidently identified, and the identities of the HCPs were further confirmed by targeted MS/MS experiments. In addition, the performance of the assay was evaluated by an interlaboratory study in which three independent laboratories performed the same HCP assay on the mAb sample. The reproducibility of this assay is also discussed.


mAbs | 2016

A sensitive multidimensional method for the detection, characterization, and quantification of trace free drug species in antibody-drug conjugate samples using mass spectral detection.

Robert E. Birdsall; Sean M. McCarthy; Marie Claire Janin-Bussat; Michel Perez; Jean-François Haeuw; Weibin Chen; Alain Beck

abstract Conjugation processes and stability studies associated with the production and shelf life of antibody-drug conjugates (ADCs) can result in free (non-conjugated) drug species. These free drug species can increase the risk to patients and reduce the efficacy of the ADC. Despite stringent purification steps, trace levels of free drug species may be present in formulated ADCs, reducing the therapeutic window. The reduction of sample preparation steps through the incorporation of multidimensional techniques has afforded analysts more efficient methods to assess trace drug species. Multidimensional methods coupling size-exclusion and reversed phase liquid chromatography with ultra-violet detection (SEC-RPLC/UV) have been reported, but offer limited sensitivity and can limit method optimization. The current study addresses these challenges with a multidimensional method that is specific, sensitive, and enables method control in both dimensions via coupling of an on-line solid phase extraction column to RPLC with mass spectral detection (SPE-RPLC/MS). The proposed method was evaluated using an antibody-fluorophore conjugate (AFC) as an ADC surrogate to brentuximab vedotin and its associated parent maleimide-val-cit-DSEA payload and the derived N-acetylcysteine adduct formed during the conjugation process. Assay sensitivity was found to be 2 orders more sensitive using MS detection in comparison to UV-based detection with a nominal limit of quantitation of 0.30 ng/mL (1.5 pg on-column). Free-drug species were present in an unadulterated ADC surrogate sample at concentrations below 7 ng/mL, levels not detectable by UV alone. The proposed SPE-RPLC/MS method provides a high degree of specificity and sensitivity in the assessment of trace free drug species and offers improved control over each dimension, enabling straightforward integration into existing or novel workflows.


mAbs | 2016

In-depth structural characterization of Kadcyla® (ado-trastuzumab emtansine) and its biosimilar candidate

Liuxi Chen; Lan Wang; Henry Shion; Chuanfei Yu; Ying Qing Yu; Lei Zhu; Meng Li; Weibin Chen; Kai Gao

ASBTRACT The biopharmaceutical industry has become increasingly focused on developing biosimilars as less expensive therapeutic products. As a consequence, the regulatory approval of 2 antibody-drug conjugates (ADCs), Kadcyla® and Adcetris® has led to the development of biosimilar versions by companies located worldwide. Because of the increased complexity of ADC samples that results from the heterogeneity of conjugation, it is imperative that close attention be paid to the critical quality attributes (CQAs) that stem from the conjugation process during ADC biosimilar development process. A combination of physicochemical, immunological, and biological methods are warranted in order to demonstrate the identity, purity, concentration, and activity (potency or strength) of ADC samples. As described here, we performed extensive characterization of a lysine conjugated ADC, ado-trastuzumab emtansine, and compared its CQAs between the reference product (Kadcyla®) and a candidate biosimilar. Primary amino acid sequences, drug-to-antibody ratios (DARs), conjugation sites and site occupancy data were acquired and compared by LC/MS methods. Furthermore, thermal stability, free drug content, and impurities were analyzed to further determine the comparability of the 2 ADCs. Finally, biological activities were compared between Kadcyla® and biosimilar ADCs using a cytotoxic activity assay and a HER2 binding assay. The in-depth characterization helps to establish product CQAs, and is vital for ADC biosimilars development to ensure their comparability with the reference product, as well as product safety.


mAbs | 2016

Advanced assessment of the physicochemical characteristics of Remicade® and Inflectra® by sensitive LC/MS techniques

Jing Fang; Catalin E. Doneanu; William R. Alley; Ying Qing Yu; Alain Beck; Weibin Chen

ABSTRACT In this study, we demonstrate the utility of ultra-performance liquid chromatography coupled to mass spectrometry (MS) and ion-mobility spectrometry (IMS) to characterize and compare reference and biosimilar monoclonal antibodies (mAbs) at an advanced level. Specifically, we focus on infliximab and compared the glycan profiles, higher order structures, and their host cell proteins (HCPs) of the reference and biosimilar products, which have the brand names Remicade® and Inflectra®, respectively. Overall, the biosimilar attributes mirrored those of the reference product to a very high degree. The glycan profiling analysis demonstrated a high degree of similarity, especially among the higher abundance glycans. Some differences were observed for the lower abundance glycans. Glycans terminated with N-glycolylneuraminic acid were generally observed to be at higher normalized abundance levels on the biosimilar mAb, while those possessing α-linked galactose pairs were more often expressed at higher levels on the reference molecule. Hydrogen deuterium exchange (HDX) analyses further confirmed the higher-order similarity of the 2 molecules. These results demonstrated only very slight differences between the 2 products, which, interestingly, seemed to be in the area where the N-linked glycans reside. The HCP analysis by a 2D-UPLC IMS-MS approach revealed that the same 2 HCPs were present in both mAb samples. Our ability to perform these types of analyses and acquire insightful data for biosimilarity assessment is based upon our highly sensitive UPLC MS and IMS methods.

Collaboration


Dive into the Weibin Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge