Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weibing Teng is active.

Publication


Featured researches published by Weibing Teng.


Biomacromolecules | 2010

Complete Recombinant Silk-Elastinlike Protein-Based Tissue Scaffold

Weiguo Qiu; Yiding Huang; Weibing Teng; Celine Cohn; Joseph Cappello; Xiaoyi Wu

Due to their improved biocompatibility and specificity over synthetic materials, protein-based biomaterials, either derived from natural sources or genetically engineered, have been widely fabricated into nanofibrous scaffolds for tissue engineering applications. However, their inferior mechanical properties often require the reinforcement of protein-based tissue scaffolds using synthetic polymers. In this study, we report the electrospinning of a completely recombinant silk-elastinlike protein-based tissue scaffold with excellent mechanical properties and biocompatibility. In particular, SELP-47K containing tandemly repeated polypeptide sequences derived from native silk and elastin was electrospun into nanofibrous scaffolds, and stabilized via chemical vapor treatment and mechanical preconditioning. When fully hydrated in 1× PBS at 37 °C, mechanically preconditioned SELP-47K scaffolds displayed elastic moduli of 3.4-13.2 MPa, ultimate tensile strengths of 5.7-13.5 MPa, deformabilities of 100-130% strain, and resilience of 80.6-86.9%, closely matching or exceeding those of protein-synthetic blend polymeric scaffolds. Additionally, SELP-47K nanofibrous scaffolds promoted cell attachment and growth, demonstrating their in vitro biocompatibility.


Biomacromolecules | 2009

Wet-spinning of recombinant silk-elastin-like protein polymer fibers with high tensile strength and high deformability.

Weiguo Qiu; Weibing Teng; Joseph Cappello; Xiaoyi Wu

A recombinant silk-elastin-like protein copolymer SELP-47K containing tandemly repeated amino acid sequence blocks from silk, GAGAGS, and elastin, GVGVP, was fabricated into microdiameter fibers using a wet-spinning technique. Raman spectral analysis revealed the formation of antiparallel beta-sheet crystals of the silk-like blocks. Dry SELP-47K fibers display the dependence of mechanical properties such as Youngs modulus on fiber diameter, suggesting more oriented and crystallized molecular chains in small-diameter fibers. Additionally, a brittle fracture mode was identified for dry fibers by SEM analysis of fracture surfaces. Hydration dramatically influenced the mechanical behavior of SELP-47K fibers. In contrast to the high tensile strength and limited strains to failure of dry fibers, fully hydrated SELP-47K fibers possessed strains to failure as high as 700%. Furthermore, upon chemical cross-linking, a tensile mechanical strength up to 20 MPa was achieved in hydrated fibers without compromising their high deformability. By combing the silk- and elastin-derived sequences into a single SELP-47K protein polymer, we demonstrated that protein fibers with high tensile strength and high deformability can be fabricated.


Biomacromolecules | 2009

Recombinant Silk-Elastinlike Protein Polymer Displays Elasticity Comparable to Elastin

Weibing Teng; Joseph Cappello; Xiaoyi Wu

We evaluated the mechanical properties of the genetically engineered, recombinant silk-elastinlike protein copolymer, SELP-47K. In tensile stress-strain analysis, methanol-treated non-cross-linked SELP-47K films exceeded the properties of native aortic elastin, attaining an ultimate tensile strength of 2.5 +/- 0.4 MPa, an elastic modulus of 1.7 +/- 0.4 MPa, an extensibility of 190 +/- 60%, and a resilience of 86 +/- 4% after 10 cycles of mechanical preconditioning. Stress-relaxation and creep analysis showed that films substantially maintained their elastic properties under sustained deformation. Chemical cross-linking of SELP-47K films doubled the elastic modulus and ultimate tensile strength and enhanced the extensibility and resilience. The underlying conformational and microstructural features of the films were examined. Raman spectroscopy revealed that the silklike blocks of SELP-47K existed in antiparallel beta-sheet crystals in the films, likely responsible for the robust physical cross-links. Scanning electron microscopy (SEM) revealed that the various processing treatments and the mechanical deformation of the films induced changes in their surface microstructure consistent with the coagulation and alignment of polymer chains. These results demonstrate that films with excellent elasticity, comparable to native aortic elastin, are obtainable from SELP-47K, a protein copolymer combining both silk- and elastin-derived sequences in a single polymer chain.


Biopolymers | 2012

Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent

Zhengbao Zha; Weibing Teng; Valerie Markle; Zhifei Dai; Xiaoyi Wu

Electrospinning of natural polymer nanofibers useful for biomedical applications often requires the use of cytotoxic organic solvents. In this study, gelatin nanofibers are electrospun from phosphate buffer saline/ethanol binary mixtures as a benign solvent at ambient temperature. The influences of ionic strength, ethanol concentration, and gelatin concentration on the electrospinnability of gelatin solutions and the fiber microarchitectures are analyzed. The electrospun scaffolds retain their morphologies during vapor-phase crosslinking with glutaraldehyde in ethanol and the subsequent removal of salts contained in the nanofibers via water rinsing. When fully hydrated, the mechanically preconditioned scaffolds display a Youngs modulus of 25.5 ± 5.3 kPa, tensile strength of 55.5 ± 13.9 kPa, deformability of 160 ± 15%, and resilience of 89.9 ± 1.8%. When cultured on the gelatin scaffolds, 3T3 fibroblasts displayed spindle-like morphology, similar to the cells normal morphology in a 3D extracellular matrix.


Journal of Physical Chemistry B | 2011

Optically Transparent Recombinant Silk-Elastinlike Protein Polymer Films

Weibing Teng; Yiding Huang; Joseph Cappello; Xiaoyi Wu

Recombinant protein polymers, evaluated extensively as biomaterials for applications in drug delivery and tissue engineering, are rarely reported as being optically transparent. Here we report the notable optical transparency of films composed of a genetically engineered silk-elastinlike protein polymer SELP-47K. SELP-47K films of 100 μm in thickness display a transmittance of 93% in the wavelength range of 350-800 nm. While covalent cross-linking of SELP-47K via glutaraldehyde decreases its transmittance to 77% at the wavelength of 800 nm, noncovalent cross-linking using methanol slightly increases it to 95%. Non- and covalent cross-linking of SELP-47K films also influences their secondary structures and water contents. Cell viability and proliferation analyses further reveal the excellent cytocompatibility of both non- and covalently cross-linked SELP-47K films. The combination of high optical transparency and cytocompatibility of SELP-47K films, together with their previously reported outstanding mechanical properties, suggests that this protein polymer may be useful in unique, new biomedical applications.


Journal of Controlled Release | 2011

Physical Crosslinking Modulates Sustained Drug Release from Recombinant Silk-Elastinlike Protein Polymer for Ophthalmic Applications

Weibing Teng; Joseph Cappello; Xiaoyi Wu

We evaluated the drug release capability of optically transparent recombinant silk-elastinlike protein polymer, SELP-47K, films to sustainably deliver the common ocular antibiotic, ciprofloxacin. The ciprofloxacin release kinetics from drug-loaded SELP-47K films treated with ethanol or methanol vapor to induce different densities of physical crosslinking was investigated. Additionally, the drug-loaded protein films were embedded in a protein polymer coating to further prolong the release of the drug. Drug-loaded SELP-47K films released ciprofloxacin for up to 132 h with near first-order release kinetics. Polymer coating of drug-loaded films prolonged drug release for up to 220 h. The antimicrobial activity of ciprofloxacin released from the drug delivery matrices was not impaired by the film casting process or the ethanol or methanol treatments. The mechanism of drug release was elucidated by analyzing the physical properties of the film specimens, including equilibrium swelling, soluble fraction, surface roughness and hydrophobicity. Additionally, the conformation of the SELP-47K and its physical crosslinks in the films was analyzed by FTIR and Raman spectroscopy. A three-parameter physics based model accurately described the release rates observed for the various film and coating treatments and attributed the effects to the degree of physical crosslinking of the films and to an increasing affinity of the drug with the polymer network. Together, these results indicate that optically transparent silk-elastinlike protein films may be attractive material candidates for novel ophthalmic drug delivery devices.


Soft Matter | 2012

Organic-inorganic nanovesicles for doxorubicin storage and release

Siu Ling Leung; Zhengbao Zha; Weibing Teng; Celine Cohn; Zhifei Dai; Xiaoyi Wu

The potential of organic–inorganic liposomal cerasomes to store and release doxorubicin (DOX) is investigated. Specifically, cerasomes display sustained DOX release in serum-enriched cell culture medium but minimal drug leakage in deionized water. As revealed by a physics-based model, the medium-sensitive DOX release/leakage is attributed to serum-mediated dissociation of DOX molecules. DOX-loaded cerasomes effectively inhibit the proliferation of human prostate cancer DU145 cells. Furthermore, the kinetics of cerasome uptake/internalization and DOX release correlates well with the time scale for DOX-loaded cerasomes to inhibit the proliferation of the DU145 cells.


Colloids and Surfaces B: Biointerfaces | 2015

Comparative study of antibody immobilization mediated by lipid and polymer fibers

Celine Cohn; Siu Ling Leung; Zhengbao Zha; Jessica R. Crosby; Weibing Teng; Xiaoyi Wu

Antibody immobilization and function retention are important to a variety of applications, including proteomics, drug discovery, diagnostics, and biosensors. The present study investigates antibody immobilization mediated by cholesteryl succinyl silane (CSS) fibers, in comparison to hydrophobic polycaprolactone (PCL) fibers and hydrophilic plasma-treated PCL fibers. When incubated with a model protein, the formation of protein aggregates is observed on hydrophobic PCL fibers but not on the more hydrophobic CSS fibers, indicating that CSS fibers immobilize proteins through mechanisms other than hydrophobic interaction. When exposed to a limited amount of antibody, CSS fibers immobilize more antibodies than plasma-treated PCL fibers and no fewer antibodies than PCL fibers. The function retention of antibodies immobilized on the fibers is analyzed using a cell-capture assay, which shows that the antibody-functionalized CSS fibrous matrices capture 6- or 7-fold more cells than the antibody-functionalized PCL or plasma-treated PCL fibrous matrices, respectively. Data collected from the study show that the lipid fiber-mediated immobilization of antibody not only maintains the advantages of physical immobilization such as easiness and rapidness of operation but also improves function retention.


Macromolecular Rapid Communications | 2014

Engineering aqueous fiber assembly into silk-elastin-like protein polymers

Like Zeng; Linan Jiang; Weibing Teng; Joseph Cappello; Yitshak Zohar; Xiaoyi Wu

Self-assembled peptide/protein nanofibers are valuable 1D building blocks for creating complex structures with designed properties and functions. It is reported that the self-assembly of silk-elastin-like protein polymers into nanofibers or globular aggregates in aqueous solutions can be modulated by tuning the temperature of the protein solutions, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model is proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores--affected by the size of the silk blocks and the charge of the elastin blocks--plays a critical role in the assembly of silk-elastin nanofibers. Furthermore, enhanced hydrophobic interactions between the elastin blocks at elevated temperatures greatly influence the nanoscale features of silk-elastin nanofibers.


Applied Physics Letters | 2014

Ordering recombinant silk-elastin-like nanofibers on the microscale

Like Zeng; Weibing Teng; Linan Jiang; Joseph Cappello; Xiaoyi Wu

Self-assembled peptide/polypeptide nanofibers are appealing building blocks for creating complex three-dimensional structures. However, ordering assembled peptide/polypeptide nanofibers into three-dimensional structures on the microscale remains challenging and often requires the employment of top-down approaches. We report that silk-elastin-like protein polymers self-assemble into nanofibers in physiologically relevant conditions, the assembled nanofibers further form fiber clusters on the microscale, and the nanofiber clusters eventually coalesce into three-dimensional structures with distinct nanoscale and microscale features. It is believed that the interplay between fiber growth and molecular diffusion leads to the ordering of the assembled silk-elastin-like nanofibers at the microscale.

Collaboration


Dive into the Weibing Teng's collaboration.

Top Co-Authors

Avatar

Xiaoyi Wu

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Like Zeng

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge