Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weida Tong is active.

Publication


Featured researches published by Weida Tong.


Nature Biotechnology | 2006

Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project

Tucker A. Patterson; Edward K. Lobenhofer; Stephanie Fulmer-Smentek; Patrick J. Collins; Tzu-Ming Chu; Wenjun Bao; Hong Fang; Ernest S. Kawasaki; Irina Tikhonova; Stephen J. Walker; Liang Zhang; Patrick Hurban; Francoise de Longueville; James C. Fuscoe; Weida Tong; Leming Shi; Russell D. Wolfinger

Microarray-based expression profiling experiments typically use either a one-color or a two-color design to measure mRNA abundance. The validity of each approach has been amply demonstrated. Here we provide a simultaneous comparison of results from one- and two-color labeling designs, using two independent RNA samples from the Microarray Quality Control (MAQC) project, tested on each of three different microarray platforms. The data were evaluated in terms of reproducibility, specificity, sensitivity and accuracy to determine if the two approaches provide comparable results. For each of the three microarray platforms tested, the results show good agreement with high correlation coefficients and high concordance of differentially expressed gene lists within each platform. Cumulatively, these comparisons indicate that data quality is essentially equivalent between the one- and two-color approaches and strongly suggest that this variable need not be a primary factor in decisions regarding experimental microarray design.


Nature Biotechnology | 2006

Rat toxicogenomic study reveals analytical consistency across microarray platforms

Lei Guo; Edward K. Lobenhofer; Charles Wang; Richard Shippy; Stephen Harris; Lu Zhang; Nan Mei; Tao Chen; Damir Herman; Federico Goodsaid; Patrick Hurban; Kenneth L. Phillips; Jun Xu; Xutao Deng; Yongming Andrew Sun; Weida Tong; Leming Shi

To validate and extend the findings of the MicroArray Quality Control (MAQC) project, a biologically relevant toxicogenomics data set was generated using 36 RNA samples from rats treated with three chemicals (aristolochic acid, riddelliine and comfrey) and each sample was hybridized to four microarray platforms. The MAQC project assessed concordance in intersite and cross-platform comparisons and the impact of gene selection methods on the reproducibility of profiling data in terms of differentially expressed genes using distinct reference RNA samples. The real-world toxicogenomic data set reported here showed high concordance in intersite and cross-platform comparisons. Further, gene lists generated by fold-change ranking were more reproducible than those obtained by t-test P value or Significance Analysis of Microarrays. Finally, gene lists generated by fold-change ranking with a nonstringent P-value cutoff showed increased consistency in Gene Ontology terms and pathways, and hence the biological impact of chemical exposure could be reliably deduced from all platforms analyzed.


Journal of Chemical Information and Computer Sciences | 2001

QSAR Models Using a Large Diverse Set of Estrogens

Leming M. Shi; Hong Fang; Weida Tong; Jie Wu; Roger Perkins; Robert M. Blair; William S. Branham; Stacey L. Dial; Carrie L. Moland; Daniel M. Sheehan

Endocrine disruptors (EDs) have a variety of adverse effects in humans and animals. About 58,000 chemicals, most having little safety data, must be tested in a group of tiered assays. As assays will take years, it is important to develop rapid methods to help in priority setting. For application to large data sets, we have developed an integrated system that contains sequential four phases to predict the ability of chemicals to bind to the estrogen receptor (ER), a prevalent mechanism for estrogenic EDs. Here we report the results of evaluating two types of QSAR models for inclusion in phase III to quantitatively predict chemical binding to the ER. Our data set for the relative binding affinities (RBAs) to the ER consists of 130 chemicals covering a wide range of structural diversity and a 6 orders of magnitude spread of RBAs. CoMFA and HQSAR models were constructed and compared for performance. The CoMFA model had a r2 = 0.91 and a q2LOO = 0.66. HQSAR showed reduced performance compared to CoMFA with r2 = 0.76 and q2LOO = 0.59. A number of parameters were examined to improve the CoMFA model. Of these, a phenol indicator increased the q2LOO to 0.71. When up to 50% of the chemicals were left out in the leave-N-out cross-validation, the q2 remained significant. Finally, the models were tested by using two test sets; the q2pred for these were 0.71 and 0.62, a significant result which demonstrates the utility of the CoMFA model for predicting the RBAs of chemicals not included in the training set. If used in conjunction with phases I and II, which reduced the size of the data set dramatically by eliminating most inactive chemicals, the current CoMFA model (phase III) can be used to predict the RBA of chemicals with sufficient accuracy and to provide quantitative information for priority setting.


Environmental Health Perspectives | 2003

ArrayTrack--supporting toxicogenomic research at the U.S. Food and Drug Administration National Center for Toxicological Research.

Weida Tong; Xiaoxi Cao; Stephen Harris; Hongmei Sun; Hong Fang; James C. Fuscoe; Angela J. Harris; Huixiao Hong; Qian Xie; Roger Perkins; Leming Shi; Dan Casciano

The mapping of the human genome and the determination of corresponding gene functions, pathways, and biological mechanisms are driving the emergence of the new research fields of toxicogenomics and systems toxicology. Many technological advances such as microarrays are enabling this paradigm shift that indicates an unprecedented advancement in the methods of understanding the expression of toxicity at the molecular level. At the National Center for Toxicological Research (NCTR) of the U.S. Food and Drug Administration, core facilities for genomic, proteomic, and metabonomic technologies have been established that use standardized experimental procedures to support centerwide toxicogenomic research. Collectively, these facilities are continuously producing an unprecedented volume of data. NCTR plans to develop a toxicoinformatics integrated system (TIS) for the purpose of fully integrating genomic, proteomic, and metabonomic data with the data in public repositories as well as conventional (Italic)in vitro(/Italic) and (Italic)in vivo(/Italic) toxicology data. The TIS will enable data curation in accordance with standard ontology and provide or interface a rich collection of tools for data analysis and knowledge mining. In this article the design, practical issues, and functions of the TIS are discussed through presenting its prototype version, ArrayTrack, for the management and analysis of DNA microarray data. ArrayTrack is logically constructed of three linked components: a) a library (LIB) that mirrors critical data in public databases; b) a database (MicroarrayDB) that stores microarray experiment information that is Minimal Information About a Microarray Experiment (MIAME) compliant; and c) tools (TOOL) that operate on experimental and public data for knowledge discovery. Using ArrayTrack, we can select an analysis method from the TOOL and apply the method to selected microarray data stored in the MicroarrayDB; the analysis results can be linked directly to gene information in the LIB.


Drug Discovery Today | 2011

FDA-approved drug labeling for the study of drug-induced liver injury §

Minjun Chen; Vikrant Vijay; Qiang Shi; Zhichao Liu; Hong Fang; Weida Tong

Drug-induced liver injury (DILI) is a leading cause of drugs failing during clinical trials and being withdrawn from the market. Comparative analysis of drugs based on their DILI potential is an effective approach to discover key DILI mechanisms and risk factors. However, assessing the DILI potential of a drug is a challenge with no existing consensus methods. We proposed a systematic classification scheme using FDA-approved drug labeling to assess the DILI potential of drugs, which yielded a benchmark dataset with 287 drugs representing a wide range of therapeutic categories and daily dosage amounts. The method is transparent and reproducible with a potential to serve as a common practice to study the DILI of marketed drugs for supporting drug discovery and biomarker development.


Nature Biotechnology | 2014

The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance

Charles Wang; Binsheng Gong; Pierre R. Bushel; Jean Thierry-Mieg; Danielle Thierry-Mieg; Joshua Xu; Hong Fang; Huixiao Hong; Jie Shen; Zhenqiang Su; Joe Meehan; Xiaojin Li; Lu Yang; Haiqing Li; Paweł P. Łabaj; David P. Kreil; Dalila B. Megherbi; Stan Gaj; Florian Caiment; Joost H.M. van Delft; Jos Kleinjans; Andreas Scherer; Viswanath Devanarayan; Jian Wang; Yong Yang; Hui-Rong Qian; Lee Lancashire; Marina Bessarabova; Yuri Nikolsky; Cesare Furlanello

The concordance of RNA-sequencing (RNA-seq) with microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed using a range of chemical treatment conditions. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same liver samples of rats exposed in triplicate to varying degrees of perturbation by 27 chemicals representing multiple modes of action (MOAs). The cross-platform concordance in terms of differentially expressed genes (DEGs) or enriched pathways is linearly correlated with treatment effect size (R20.8). Furthermore, the concordance is also affected by transcript abundance and biological complexity of the MOA. RNA-seq outperforms microarray (93% versus 75%) in DEG verification as assessed by quantitative PCR, with the gain mainly due to its improved accuracy for low-abundance transcripts. Nonetheless, classifiers to predict MOAs perform similarly when developed using data from either platform. Therefore, the endpoint studied and its biological complexity, transcript abundance and the genomic application are important factors in transcriptomic research and for clinical and regulatory decision making.


BMC Bioinformatics | 2005

Cross-platform comparability of microarray technology: Intra-platform consistency and appropriate data analysis procedures are essential

Leming Shi; Weida Tong; Hong Fang; Uwe Scherf; Jing Han; Raj K. Puri; Felix W. Frueh; Federico Goodsaid; Lei Guo; Zhenqiang Su; Tao Han; James C. Fuscoe; Z aAlex Xu; Tucker A. Patterson; Huixiao Hong; Qian Xie; Roger Perkins; James J. Chen; Daniel A. Casciano

BackgroundThe acceptance of microarray technology in regulatory decision-making is being challenged by the existence of various platforms and data analysis methods. A recent report (E. Marshall, Science, 306, 630–631, 2004), by extensively citing the study of Tan et al. (Nucleic Acids Res., 31, 5676–5684, 2003), portrays a disturbingly negative picture of the cross-platform comparability, and, hence, the reliability of microarray technology.ResultsWe reanalyzed Tans dataset and found that the intra-platform consistency was low, indicating a problem in experimental procedures from which the dataset was generated. Furthermore, by using three gene selection methods (i.e., p-value ranking, fold-change ranking, and Significance Analysis of Microarrays (SAM)) on the same dataset we found that p-value ranking (the method emphasized by Tan et al.) results in much lower cross-platform concordance compared to fold-change ranking or SAM. Therefore, the low cross-platform concordance reported in Tans study appears to be mainly due to a combination of low intra-platform consistency and a poor choice of data analysis procedures, instead of inherent technical differences among different platforms, as suggested by Tan et al. and Marshall.ConclusionOur results illustrate the importance of establishing calibrated RNA samples and reference datasets to objectively assess the performance of different microarray platforms and the proficiency of individual laboratories as well as the merits of various data analysis procedures. Thus, we are progressively coordinating the MAQC project, a community-wide effort for microarray quality control.


Bioinformatics | 2010

ISA software suite

Philippe Rocca-Serra; Marco Brandizi; Eamonn Maguire; Nataliya Sklyar; Chris F. Taylor; Kimberly Begley; Dawn Field; Stephen Harris; Winston Hide; Oliver Hofmann; Steffen Neumann; Peter Sterk; Weida Tong; Susanna-Assunta Sansone

Summary: The first open source software suite for experimentalists and curators that (i) assists in the annotation and local management of experimental metadata from high-throughput studies employing one or a combination of omics and other technologies; (ii) empowers users to uptake community-defined checklists and ontologies; and (iii) facilitates submission to international public repositories. Availability and Implementation: Software, documentation, case studies and implementations at http://www.isa-tools.org Contact: [email protected]


Journal of Chemical Information and Computer Sciences | 1998

Evaluation of Quantitative Structure−Activity Relationship Methods for Large-Scale Prediction of Chemicals Binding to the Estrogen Receptor†

Weida Tong; David R. Lowis; Roger Perkins; Yu Chen; William J. Welsh; Dean W. Goddette; Daniel M. Sheehan

Three different QSAR methods, Comparative Molecular Field Analysis (CoMFA), classical QSAR (utilizing the CODESSA program), and Hologram QSAR (HQSAR), are compared in terms of their potential for screening large data sets of chemicals as endocrine disrupting compounds (EDCs). While CoMFA and CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis) have been commercially available for some time, HQSAR is a novel QSAR technique. HQSAR attempts to correlate molecular structure with biological activity for a series of compounds using molecular holograms constructed from counts of sub-structural molecular fragments. In addition to using r2 and q2 (cross-validated r2) in assessing the statistical quality of QSAR models, another statistical parameter was defined to be the ratio of the standard error to the activity range. The statistical quality of the QSAR models constructed using CoMFA and HQSAR techniques were comparable and were generally better than those produced with CODESSA. It is notable that only 2D-connectivity, bond and elemental atom-type information were considered in building HQSAR models. Since HQSAR requires no conformational analysis or structural alignment, it is straightforward to use and lends itself readily to the rapid screening of large numbers of compounds. Among the QSAR methods considered, HQSAR appears to offer many attractive features, such as speed, reproducibility and ease of use, which portend its utility for prioritizing large numbers of potential EDCs for subsequent toxicological testing and risk assessment.


Environmental Toxicology and Chemistry | 2003

Quantitative structure‐activity relationship methods: Perspectives on drug discovery and toxicology

Roger Perkins; Hong Fang; Weida Tong; William J. Welsh

Quantitative structure-activity relationships (QSARs) attempt to correlate chemical structure with activity using statistical approaches. The QSAR models are useful for various purposes including the prediction of activities of untested chemicals. Quantitative structure-activity relationships and other related approaches have attracted broad scientific interest, particularly in the pharmaceutical industry for drug discovery and in toxicology and environmental science for risk assessment. An assortment of new QSAR methods have been developed during the past decade, most of them focused on drug discovery. Besides advancing our fundamental knowledge of QSARs, these scientific efforts have stimulated their application in a wider range of disciplines, such as toxicology, where QSARs have not yet gained full appreciation. In this review, we attempt to summarize the status of QSAR with emphasis on illuminating the utility and limitations of QSAR technology. We will first review two-dimensional (2D) QSAR with a discussion of the availability and appropriate selection of molecular descriptors. We will then proceed to describe three-dimensional (3D) QSAR and key issues associated with this technology, then compare the relative suitability of 2D and 3D QSAR for different applications. Given the recent technological advances in biological research for rapid identification of drug targets, we mention several examples in which QSAR approaches are employed in conjunction with improved knowledge of the structure and function of the target receptor. The review will conclude by discussing statistical validation of QSAR models, a topic that has received sparse attention in recent years despite its critical importance.

Collaboration


Dive into the Weida Tong's collaboration.

Top Co-Authors

Avatar

Hong Fang

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Huixiao Hong

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Roger Perkins

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenqiang Su

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Zhichao Liu

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Minjun Chen

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Weigong Ge

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Qian Xie

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

James C. Fuscoe

National Center for Toxicological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge