Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weidong Xiao is active.

Publication


Featured researches published by Weidong Xiao.


Journal of Virology | 2000

Humoral Immunity to Adeno-Associated Virus Type 2 Vectors following Administration to Murine and Nonhuman Primate Muscle

Narendra Chirmule; Weidong Xiao; Alemseged Truneh; Michael A. Schnell; Joseph V. Hughes; Philip W. Zoltick; James M. Wilson

ABSTRACT Adeno-associated virus (AAV) is being developed as a vector capable of conferring long-term gene expression, which is useful in the treatment of chronic diseases. In most therapeutic applications, it is necessary to readminister the vector. This study characterizes the humoral immune response to AAV capsid proteins following intramuscular injection and its impact on vector readministration. Studies of mice and rhesus monkeys demonstrated the formation of neutralizing antibodies to AAV capsid proteins that persisted for over 1 year and then diminished, but this did not prevent the efficacy of vector readministration. More-detailed studies strongly suggested that the B-cell response was T cell dependent. This was further evaluated with a blocking antibody to human CD4, primatized for clinical trials, in a biologically compatible mouse in which the endogenous murine CD4 gene was functionally replaced with the human counterpart. Transient pharmacologic inhibition of CD4 T cells with CD4 antibody prevented an antivector response long after the effects of the CD4 antibody diminished; readministration of vector without diminution of gene expression was possible. Our studies suggest that truly durable transgene expression (i.e., prolonged genetic engraftment together with vector readministration) is possible with AAV in skeletal muscle, although it will be necessary to transiently inhibit CD4 T-cell function to avoid the activation of memory B cells.


Molecular Therapy | 2003

Generation and characterization of chimeric recombinant AAV vectors

Bernd Hauck; Ling Chen; Weidong Xiao

Although most animal experiments with recombinant adeno-associated virus (AAV) vectors have been based on AAV serotype 2, recent studies showed that AAV vectors based on AAV serotype 1 performed more efficiently in muscle and other tissues. On the other hand, AAV2-based vectors can be readily purified by heparin column. To combine the advantages of both types of vectors, we developed a strategy to generate chimeric vectors by using a mixture of AAV helper plasmids encoding both serotypes in the transfection process. Because the AAV packaging machinery cannot distinguish between closely related AAV1 and AAV2 capsid proteins, each packaged virion contains capsid proteins from both serotypes. As expected, the resulting chimeric vectors could be purified by heparin column. Neutralizing antibody assays showed that the chimeric vectors can be inhibited by either AAV1 or AAV2 antiserum. In vivo, the chimeric vectors direct levels of expression similar to those of AAV1 in muscle or AAV2 in liver; that is, they combine the best transduction characteristics of both parent vectors. In summary, this study provides a straightforward method for combining various properties of different AAV serotypes into one vector. Potential limitations of the chimeric vectors are also discussed.


Journal of Virology | 2003

Characterization of Tissue Tropism Determinants of Adeno-Associated Virus Type 1

Bernd Hauck; Weidong Xiao

ABSTRACT Muscle is an attractive target for gene delivery because of its mass and because vectors can be delivered in a noninvasive fashion. Adeno-associated virus (AAV) has been shown to be effective for muscle-targeted gene transfer. Recent progress in characterization of AAV serotype 1 (AAV1) and AAV6 demonstrated that these two AAV serotypes are far more efficient in transducing muscle than is the traditionally used AAV2. Since all cis elements are identical in these vectors, the potential determinants for their differences in transducing muscle appear to be located within the AAV capsid proteins. In the present study, a series of AAV capsid mutants were generated to identify the major regions affecting AAV transduction efficiency in muscle. Replacement of amino acids 350 to 736 of AAV2 VP1 with the corresponding amino acids from VP1 of AAV1 resulted in a hybrid vector that behaved very similarly to AAV1 in vitro and in vivo in muscle. Characterization of additional mutants carrying smaller regions of the AAV1 VP1 amino acid sequence in the AAV2 capsid protein suggested that amino acids 350 to 430 of VP1 function as a major tissue tropism determinant. Further analysis showed that the heparin binding domain and the major antigenic determinants in the AAV capsid region were not necessary for the efficiency of AAV1 transduction of muscle.


Journal of Virology | 2004

Intracellular Viral Processing, Not Single-Stranded DNA Accumulation, Is Crucial for Recombinant Adeno-Associated Virus Transduction

Bernd Hauck; Wei Zhao; Katherine A. High; Weidong Xiao

ABSTRACT Adeno-associated virus (AAV) is a unique gene transfer vector which takes approximately 4 to 6 weeks to reach its expression plateau. The mechanism for this slow-rise expression profile was proposed to be inefficient second-strand DNA synthesis from the input single-stranded (ss) DNA viral genome. In order to clarify the status of ss AAV genomes, we generated AAV vectors labeled with bromodeoxyuridine (BrdU), a nucleotide analog that can be incorporated into the AAV genome and packaged into infectious virions. Since BrdU-DNA can be detected only by an anti-BrdU antibody when DNA is in an ss form, not in a double-stranded (ds) form, ss AAV genomes with BrdU can be readily tracked in situ. Although ss AAV DNA was abundant by Southern blot analysis, free ss AAV genomes were not detectable after AAV transduction by this new detection method. Further Southern blot analysis of viral DNA and virions revealed that ss AAV DNA was protected within virions. Extracted cellular fractions demonstrated that viral particles in host cells remained infectious. In addition, a significant amount of AAV genomes was degraded after AAV transduction. Therefore, we conclude that the amount of free ss DNA is not abundant during AAV transduction. AAV transduction is limited by the steps that affect AAV ss DNA release (i.e., uncoating) before second-strand DNA synthesis can occur. AAV ss DNA released from viral uncoating is either converted into ds DNA efficiently or degraded by cellular DNA repair mechanisms as damaged DNA. This study elucidates a mechanism that can be exploited to develop new strategies to improve AAV vector transduction efficiency.


Journal of Virology | 2002

Improved Hepatic Gene Transfer by Using an Adeno-Associated Virus Serotype 5 Vector

Federico Mingozzi; Jörg Schüttrumpf; Valder R. Arruda; Yuhong Liu; Yi-Lin Liu; Katherine A. High; Weidong Xiao; Roland W. Herzog

ABSTRACT Adeno-associated viral (AAV) vectors have been shown to direct stable gene transfer and expression in hepatocytes, which makes them attractive tools for treatment of inherited disorders such as hemophilia B. While substantial levels of coagulation factor IX (F.IX) have been achieved using AAV serotype 2 vectors, use of a serotype 5 vector further improves transduction efficiency and levels of F.IX transgene expression by 3- to 10-fold. In addition, the AAV-5 vector transduces a higher proportion of hepatocytes (∼15%). The subpopulations of hepatocytes transduced with either vector widely overlap, with the AAV-5 vector transducing additional hepatocytes and showing a wider area of transgene expression throughout the liver parenchyma.


American Journal of Pathology | 2003

Morphine Enhances Hepatitis C Virus (HCV) Replicon Expression

Yuan Li; Ting Zhang; Steven D. Douglas; Jian-Ping Lai; Weidong Xiao; David Pleasure; Wen-Zhe Ho

Little information is available regarding whether substance abuse enhances hepatitis C virus (HCV) replication and promotes HCV disease progression. We investigated whether morphine alters HCV mRNA expression in HCV replicon-containing liver cells. Morphine significantly increased HCV mRNA expression, an effect which could be abolished by either of the opioid receptor antagonists, naltrexone or beta-funaltrexamine. Investigation of the mechanism responsible for this enhancement of HCV replicon expression demonstrated that morphine activated NF-kappaB promoter and that caffeic acid phenethyl ester, a specific inhibitor of the activation of NF-kappaB, blocked morphine-activated HCV RNA expression. In addition, morphine compromised the anti-HCV effect of interferon alpha (IFN-alpha). Our in vitro data indicate that morphine may play an important role as a positive regulator of HCV replication in human hepatic cells and may compromise IFN-alpha therapy.


Human Gene Therapy | 2008

Complete Correction of Hemophilia A with Adeno-Associated Viral Vectors Containing a Full-Size Expression Cassette

Hui Lu; Chen L; Jinhui Wang; Bernd Huack; Rita Sarkar; Shangzhen Zhou; Ray Xu; Qiulan Ding; Xuefeng Wang; Hongli Wang; Weidong Xiao

Hemophilia A is caused by a deficiency in the factor VIII (FVIII) gene. Constrained by limited packaging capacity, even the 4.3-kb B domain-deleted FVIII remained a challenge for delivery by a single adeno-associated viral (AAV) vector. Studies have shown that up to a 6.6-kb vector sequence may be packaged into AAV virions, which suggested an alternative strategy for hemophilia A gene therapy. To explore the usefulness of AAV vectors carrying an oversized FVIII gene, we constructed the AAV-FVIII vector under the control of a beta-actin promoter with a cytomegalovirus enhancer (CB) and a bovine growth hormone (bGH) poly(A) sequence. The CB promoter plus bGH signal was shown to be 3- to 5-fold more potent than the mini-transthyretin (TTR) promoter with a synthetic poly(A) sequence for directing FVIII expression in the liver. Despite the 5.75-kb genome size of pAAV-CB-FVIII, sufficient AAV vectors were produced for in vivo testing. Approximately 3- to 5-fold more FVIII secretion was observed in animals receiving AAV-CB-FVIII vectors than in those receiving standard-sized AAV-TTR-FVIII vectors. Both the activated partial thromboplastin time assay and the whole blood thromboelastographic analysis confirmed that AAV-FVIII vectors fully corrected the bleeding phenotype of hemophilia mice. These results suggest that AAV vectors with an oversized genome should be useful for not only hemophilia A gene therapy but also other diseases with large cDNA such as muscular dystrophy and cystic fibrosis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Existence of transient functional double-stranded DNA intermediates during recombinant AAV transduction

Jinhui Wang; Jing Xie; Hui Lu; Lingxia Chen; Bernd Hauck; Richard Jude Samulski; Weidong Xiao

Previous studies have documented that 0.1≈1% of input recombinant adeno-associated virus (rAAV) vectors could be stabilized and lead to transgene expression. To characterize the steps involving massive AAV DNA loss, we designed an“AAV footprinting” strategy that can track newly formed AAV dsDNA genomes. This strategy is based on an ROSA26R mouse model or cell line that carries a lacZ gene flanked by two loxP sites. When it is transduced by a rAAV vector carrying the Cre recombinase, the lacZ gene can be activated and remain active even when rAAV genomes are later lost. By using this sensitive AAV footprinting technique, we confirmed the existence of transient AAV dsDNA that went undetected by conventional DNA methods. Although these dsDNA intermediates could be efficiently formed in almost every cell and were competent for mRNA transcription and protein synthesis in vivo, they got lost continuously. Only a small fraction was eventually stabilized for sustained gene expression. Although both rAAV2 and rAAV8 can potentially have similar levels of dsDNA formation, AAV8 dsDNA was formed much faster than that of AAV2, which explains why rAAV8 is more efficient than rAAV2 in transducing the liver. Collectively, our studies suggested that rather than receptor binding, viral entry, and ssDNA to dsDNA conversion, the instability of newly formed AAV dsDNA was the primary contributing factor for the low rAAV transduction efficacy. The uncoating step significantly influenced the stability of AAV transient dsDNA. The identification of transient AAV dsDNA provided a new pathway for improving rAAV transduction.


Gene Therapy | 2003

High throughput creation of recombinant adenovirus vectors by direct cloning, green-white selection and I-Sce I-mediated rescue of circular adenovirus plasmids in 293 cells

Guangping Gao; Xiangyang Zhou; Mauricio R. Alvira; P Tran; Jonathan Marsh; K Lynd; Weidong Xiao; James M. Wilson

Ability of replication-defective adenovirus vectors to achieve efficient gene transfer in most of the mammalian cell types makes them useful vehicles for many gene transfer applications, including their use in assessing gene function. High throughput creation of recombinant adenovirus becomes a critical path to the expanding utility of adenovirus vector technology. Here, we report a process in which recombinant adenovirus vectors are isolated as single molecular clones through a convenient direct cloning and green–white selection procedure, and directly transfected into 293 cells where virus is rescued through an enzymatic reaction mediated by an intron-encoding rare endonuclease I-Sce I. This process of enzymatic rescue of circular molecular clones was at least 10-fold more efficient than that using linearized clones for transfection. This method will facilitate a high throughput creation of vectors as required for screening gene function.


Human Gene Therapy | 2011

Systemic Elimination of de novo Capsid Protein Synthesis from Replication-Competent AAV Contamination in the Liver

Hui Lu; Guang Qu; Xiao Yang; Ruian Xu; Weidong Xiao

The capsid protein synthesis in targeted tissues resulting from residual contaminating replication-competent adeno-associated virus particles (rcAAV) remains a concern for hazardous immune responses that shut down the factor IX expression in the hemophilia B clinical trial. To systematically reduce/eliminate the effects of potential contaminating rcAAV particles, we designed a novel adeno-associated virus (AAV) helper (pH22mir) with a microRNA binding cassette containing multiple copies of liver-specific (hsa-mir-122) and hematopoietic-specific (has-mir-142-3p) sequences to specifically control cap gene expression. In 293 cells, the rep and cap gene from pH22mir functioned similarly to that of conventional helper pH22. The vector yields and compositions from pH22mir and pH22 were indistinguishable. The performance of vector produced in this new system was comparable to that of similar vectors produced by conventional methods. In the human hepatic cell line, the capsid expression was reduced significantly from cap-mir cassette driven by a cytomegalovirus promoter. In the liver, 99.9% of capsid expression could be suppressed and no cap expression could be detected by western blot. In summary, we demonstrated a new concept in reducing de novo capsid synthesis in the targeted tissue. This strategy may not only help AAV vectors in controlling undesirable capsid gene expression, but can also be adopted for lentiviral or adenoviral vector production.

Collaboration


Dive into the Weidong Xiao's collaboration.

Top Co-Authors

Avatar

James M. Wilson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bernd Hauck

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Lu

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valder R. Arruda

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Jinhui Wang

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Katherine A. High

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Rita Sarkar

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge