Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weidong Zhong is active.

Publication


Featured researches published by Weidong Zhong.


Journal of Virology | 2000

De Novo Initiation of RNA Synthesis by Hepatitis C Virus Nonstructural Protein 5B Polymerase

Weidong Zhong; Annette S. Uss; Eric Ferrari; Johnson Y.N. Lau; Zhi Hong

ABSTRACT RNA-dependent RNA polymerase (RdRp) encoded by positive-strand RNA viruses is critical to the replication of viral RNA genome. Like other positive-strand RNA viruses, replication of hepatitis C virus (HCV) RNA is mediated through a negative-strand intermediate, which is generated through copying the positive-strand genomic RNA. Although it has been demonstrated that HCV NS5B alone can direct RNA replication through a copy-back primer at the 3′ end, de novo initiation of RNA synthesis is likely to be the mode of RNA replication in infected cells. In this study, we demonstrate that a recombinant HCV NS5B protein has the ability to initiate de novo RNA synthesis in vitro. The NS5B used HCV 3′ X-tail RNA (98 nucleotides) as the template to synthesize an RNA product of monomer size, which can be labeled by [γ-32P]nucleoside triphosphate. The de novo initiation activity was further confirmed by using small synthetic RNAs ending with dideoxynucleotides at the 3′ termini. In addition, HCV NS5B preferred GTP as the initiation nucleotide. The optimal conditions for the de novo initiation activity have been determined. Identification and characterization of the de novo priming or initiation activity by HCV NS5B provides an opportunity to screen for inhibitors that specifically target the initiation step.


Journal of Virology | 2000

Template/Primer Requirements and Single Nucleotide Incorporation by Hepatitis C Virus Nonstructural Protein 5B Polymerase

Weidong Zhong; Eric Ferrari; Charles A. Lesburg; David Maag; Saikat Kumar B. Ghosh; Craig E. Cameron; Johnson Y.N. Lau; Zhi Hong

ABSTRACT Nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) possesses an RNA-dependent RNA polymerase activity responsible for viral genome RNA replication. Despite several reports on the characterization of this essential viral enzyme, little is known about the reaction pathway of NS5B-catalyzed nucleotide incorporation due to the lack of a kinetic system offering efficient assembly of a catalytically competent polymerase/template/primer/nucleotide quaternary complex. In this report, specific template/primer requirements for efficient RNA synthesis by HCV NS5B were investigated. For intramolecular copy-back RNA synthesis, NS5B utilizes templates with an unstable stem-loop at the 3′ terminus which exists as a single-stranded molecule in solution. A template with a stable tetraloop at the 3′ terminus failed to support RNA synthesis by HCV NS5B. Based on these observations, a number of single-stranded RNA templates were synthesized and tested along with short RNA primers ranging from two to five nucleotides. It was found that HCV NS5B utilized di- or trinucleotides efficiently to initiate RNA replication. Furthermore, the polymerase, template, and primer assembled initiation-competent complexes at the 3′ terminus of the template RNA where the template and primer base paired within the active site cavity of the polymerase. The minimum length of the template is five nucleotides, consistent with a structural model of the NS5B/RNA complex in which a pentanucleotide single-stranded RNA template occupies a groove located along the fingers subdomain of the polymerase. This observation suggests that the initial docking of RNA on NS5B polymerase requires a single-stranded RNA molecule. A unique β-hairpin loop in the thumb subdomain may play an important role in properly positioning the single-stranded template for initiation of RNA synthesis. Identification of the template/primer requirements will facilitate the mechanistic characterization of HCV NS5B and its inhibitors.


Journal of Virology | 2006

The Amino-Terminal Domain of Bovine Viral Diarrhea Virus Npro Protein Is Necessary for Alpha/Beta Interferon Antagonism

Laura H.V.G. Gil; Israrul H. Ansari; Ventzislav Vassilev; Delin Liang; Vicky C. H. Lai; Weidong Zhong; Zhi Hong; Edward J. Dubovi; Ruben O. Donis

ABSTRACT The alpha/beta interferon (IFN-α/β) system is the first line of defense against viral infection and a critical link between the innate and adaptive immune responses. IFN-α/β secretion is the hallmark of cellular responses to acute RNA virus infections. As part of their survival strategy, many viruses have evolved mechanisms to counteract the host IFN-α/β response. Bovine viral diarrhea virus (BVDV) (genus Pestivirus) was reported to trigger interferon production in infected cultured cells under certain circumstances or to suppress it under others. Our studies with various cultured fibroblasts and epithelial bovine cells indicated that cytopathic (cp) BVDV induces IFN-α/β very inefficiently. Using a set of engineered cp BVDVs expressing mutant Npro and appropriate controls, we found that the IFN-α/β response to infection was dependent on Npro expression and independent of viral replication efficiency. In order to investigate whether the protease activity of Npro is required for IFN-α/β antagonism, we engineered Npro mutants lacking protease activity by replacement of amino acid E22, H49, or C69. We found that E22 and H49 substitutions abolished the ability of Npro to suppress IFN, whereas C69 had no effect, suggesting that the structural integrity of the N terminus of Npro was more important than its catalytic activity for IFN-α/β suppression. A catalytically active mutant with a change at a conserved Npro region near the N terminus (L8P) in both BVDV biotypes did not antagonize IFN-α/β production, confirming its involvement in this process. Taken together, these results not only provide direct evidence for the role of Npro in blocking IFN-α/β induction, but also implicate the amino-terminal domain of the protein in this function.


Journal of Virology | 2002

Comparative Analysis of Anti-Hepatitis C Virus Activity and Gene Expression Mediated by Alpha, Beta, and Gamma Interferons

I. Wayne Cheney; Vicky C. H. Lai; Weidong Zhong; Tessa Brodhag; Shannon Dempsey; Charmaine Lim; Zhi Hong; Joseph Lau; Robert C. Tam

ABSTRACT A direct comparison of the inhibitory effects of alpha, beta, and gamma interferons (IFNs) on replication of a hepatitis C virus subgenomic replicon in a hepatoma cell line revealed similarities in antiviral potency. However, alternate IFN-induced antiviral mechanisms were suggested following observations of striking differences between IFN-γ and IFN-α/β with respect to strength and durability of the antiviral response and the magnitude and pattern of IFN-mediated gene expression.


PLOS Pathogens | 2012

Sensitivity of Mitochondrial Transcription and Resistance of RNA Polymerase II Dependent Nuclear Transcription to Antiviral Ribonucleosides

Jamie J. Arnold; Suresh D. Sharma; Joy Y. Feng; Adrian S. Ray; Eric D. Smidansky; Maria L. Kireeva; Aesop Cho; Jason Perry; Jennifer E. Vela; Yeojin Park; Yili Xu; Yang Tian; Darius Babusis; Ona Barauskus; Blake R. Peterson; Averell Gnatt; Mikhail Kashlev; Weidong Zhong; Craig E. Cameron

Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by off target effects. Development of antiviral ribonucleosides for treatment of hepatitis C virus (HCV) infection has been hampered by appearance of toxicity during clinical trials that evaded detection during preclinical studies. It is well established that the human mitochondrial DNA polymerase is an off target for deoxyribonucleoside reverse transcriptase inhibitors. Here we test the hypothesis that triphosphorylated metabolites of therapeutic ribonucleoside analogues are substrates for cellular RNA polymerases. We have used ribonucleoside analogues with activity against HCV as model compounds for therapeutic ribonucleosides. We have included ribonucleoside analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents that are non-obligate chain terminators of the HCV RNA polymerase. We show that all of the anti-HCV ribonucleoside analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Unexpectedly, analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents were inhibitors of POLRMT and Pol II. Importantly, the proofreading activity of TFIIS was capable of excising these analogues from Pol II transcripts. Evaluation of transcription in cells confirmed sensitivity of POLRMT to antiviral ribonucleosides, while Pol II remained predominantly refractory. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity.


Journal of Virology | 2003

In Vitro RNA Replication Directed by Replicase Complexes Isolated from the Subgenomic Replicon Cells of Hepatitis C Virus

Vicky C. H. Lai; Shannon Dempsey; Joseph Lau; Zhi Hong; Weidong Zhong

ABSTRACT Replication of hepatitis C virus (HCV) RNA in virus-infected cells is believed to be catalyzed by viral replicase complexes (RCs), which may consist of various virally encoded nonstructural proteins and host factors. In this study, we characterized the RC activity of a crude membrane fraction isolated from HCV subgenomic replicon cells. The RC preparation was able to use endogenous replicon RNA as a template to synthesize both single-stranded (ss) and double-stranded (ds) RNA products. Divalent cations (Mg2+ and Mn2+) showed different effects on RNA synthesis. Mg2+ ions stimulated the synthesis of ss RNA but had little effect on the synthesis of ds RNA. In contrast, Mn2+ ions enhanced primarily the synthesis of ds RNA. Interestingly, ss RNA could be synthesized under certain conditions in the absence of ds RNA, and vice versa, suggesting that the ss and ds RNA were derived either from different forms of replicative intermediates or from different RCs. Pulse-chase analysis showed that radioactivity incorporated into the ss RNA was chased into the ds RNA and other larger RNA species. This observation indicated that the newly synthesized ss RNA could serve as a template for a further round of RNA synthesis. Finally, 3′ deoxyribonucleoside triphosphates were able to inhibit RNA synthesis in this cell-free system, presumably through chain termination, with 3′ dGTP having the highest potency. Establishment of the replicase assay will facilitate the identification and evaluation of potential inhibitors that would act against the entire RC of HCV.


Journal of Virology | 2005

Crystal Structure of Complete Rhinovirus RNA Polymerase Suggests Front Loading of Protein Primer

Todd Appleby; Hartmut Luecke; Jae Hoon Shim; Jim Zhen Wu; I. Wayne Cheney; Weidong Zhong; Lutz Vogeley; Zhi Hong; Nanhua Yao

ABSTRACT Picornaviruses utilize virally encoded RNA polymerase and a uridylylated protein primer to ensure replication of the entire viral genome. The molecular details of this mechanism are not well understood due to the lack of structural information. We report the crystal structure of human rhinovirus 16 3D RNA-dependent RNA polymerase (HRV16 3Dpol) at a 2.4-Å resolution, representing the first complete polymerase structure from the Picornaviridae family. HRV16 3Dpol shares the canonical features of other known polymerase structures and contains an N-terminal region that tethers the fingers and thumb subdomains, forming a completely encircled active site cavity which is accessible through a small tunnel on the backside of the molecule. The small thumb subdomain contributes to the formation of a large cleft on the front face of the polymerase which also leads to the active site. The cleft appears large enough to accommodate a template:primer duplex during RNA elongation or a protein primer during the uridylylation stage of replication initiation. Based on the structural features of HRV16 3Dpo1 and the catalytic mechanism known for all polymerases, a front-loading model for uridylylation is proposed.


Antiviral Chemistry & Chemotherapy | 2003

Hepatitis C virus therapies: current treatments, targets and future perspectives.

Michelle P. Walker; Todd Appleby; Weidong Zhong; Johnson Y.N. Lau; Zhi Hong

Chronic hepatitis C virus (HCV) infection is the cause of an emerging global epidemic of chronic liver disease. Current combination therapies are at best 80% efficacious and are often poorly tolerated. Strategies to improve the therapeutic response include the development of novel interferons, nucleoside analogues with reduced haemolysis compared with ribavirin and inosine 5′-monophosphate dehydrogenase inhibitors. Compounds in preclinical or early clinical trials include small molecules that inhibit virus-specific enzymes (such as the serine proteases, RNA polymerase and helicase) or interfere with translation (including anti-sense molecules, iRNA and ribozymes). Advances in understanding HCV replication, obtaining a sub-genomic replicon and contriving potential small animal models, in addition to solving crystallographic structures for the replication enzymes, have improved prospects for developing novel therapies. This review summarizes current and evolving treatments for chronic hepatitis C infection. In addition, progress in HCV targets and drug discovery tools valuable in the search for novel anti-HCV agents is detailed.


Journal of Virology | 2000

Generation and Characterization of a Hepatitis C Virus NS3 Protease-Dependent Bovine Viral Diarrhea Virus

Vicky C. H. Lai; Weidong Zhong; Angela Skelton; Paul Ingravallo; Venteislav Vassilev; Ruben O. Donis; Zhi Hong; Johnson Y.N. Lau

ABSTRACT Unique to pestiviruses, the N-terminal protein encoded by the bovine viral diarrhea virus (BVDV) genome is a cysteine protease (Npro) responsible for a self-cleavage that releases the N terminus of the core protein (C). This unique protease is dispensable for viral replication, and its coding region can be replaced by a ubiquitin gene directly fused in frame to the core. To develop an antiviral assay that allows the assessment of anti-hepatitis C virus (HCV) NS3 protease inhibitors, a chimeric BVDV in which the coding region of Npro was replaced by that of an NS4A cofactor-tethered HCV NS3 protease domain was generated. This cofactor-tethered HCV protease domain was linked in frame to the core protein of BVDV through an HCV NS5A-NS5B junction site and mimicked the proteolytic function of Npro in the release of BVDV core for capsid assembly. A similar chimeric construct was built with an inactive HCV NS3 protease to serve as a control. Genomic RNA transcripts derived from both chimeric clones, PH/B(wild-type HCV NS3 protease) and PH/B(S139A) (mutant HCV NS3 protease) were then transfected into bovine cells (MDBK). Only the RNA transcripts from the PH/B clone yielded viable viruses, whereas the mutant clone, PH/B(S139A), failed to produce any signs of infection, suggesting that the unprocessed fusion protein rendered the BVDV core protein defective in capsid assembly. Like the wild-type BVDV (NADL), the chimeric virus was cytopathic and formed plaques on the cell monolayer. Sequence and biochemical analyses confirmed the identity of the chimeric virus and further revealed variant viruses due to growth adaptation. Growth analysis revealed comparable replication kinetics between the wild-type and the chimeric BVDVs. Finally, to assess the genetic stability of the chimeric virus, an Npro-null BVDV (BVDV−Npro in which the entire Npro coding region was deleted) was produced. Although cytopathic, BVDV−Npro was highly defective in viral replication and growth, a finding consistent with the observed stability of the chimeric virus after serial passages.


Journal of Virology | 2011

Novel Mutations in a Tissue Culture-Adapted Hepatitis C Virus Strain Improve Infectious-Virus Stability and Markedly Enhance Infection Kinetics

Maria V. Pokrovskii; Caroline O. Bush; Rudolf K. F. Beran; Margaret Robinson; Guofeng Cheng; Neeraj Tirunagari; Martijn Fenaux; Andrew E. Greenstein; Weidong Zhong; William E. Delaney; Matthew Paulson

ABSTRACT Hepatitis C virus (HCV) establishes persistent infections and leads to chronic liver disease. It only recently became possible to study the entire HCV life cycle due to the ability of a unique cloned patient isolate (JFH-1) to produce infectious particles in tissue culture. However, despite efficient RNA replication, yields of infectious virus particles remain modest. This presents a challenge for large-scale tissue culture efforts, such as inhibitor screening. Starting with a J6/JFH-1 chimeric virus, we used serial passaging to generate a virus with substantially enhanced infectivity and faster infection kinetics compared to the parental stock. The selected virus clone possessed seven novel amino acid mutations. We analyzed the contribution of individual mutations and identified three specific mutations, core K78E, NS2 W879R, and NS4B V1761L, which were necessary and sufficient for the adapted phenotype. These three mutations conferred a 100-fold increase in specific infectivity compared to the parental J6/JFH-1 virus, and media collected from cells infected with the adapted virus yielded infectious titers as high as 1 × 108 50% tissue culture infective doses (TCID50)/ml. Further analyses indicated that the adapted virus has longer infectious stability at 37°C than the wild type. Given that the adapted phenotype resulted from a combination of mutations in structural and nonstructural proteins, these data suggest that the improved viral titers are likely due to differences in virus particle assembly that result in significantly improved infectious particle stability. This adapted virus will facilitate further studies of the HCV life cycle, virus structure, and high-throughput drug screening.

Collaboration


Dive into the Weidong Zhong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William E. Delaney

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongmei Mo

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Adrian S. Ray

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig E. Cameron

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge