Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weifang Shan is active.

Publication


Featured researches published by Weifang Shan.


Bioorganic & Medicinal Chemistry Letters | 2003

1H-Pyrazolo[3,4-b]pyridine inhibitors of cyclin-dependent kinases: highly potent 2,6-Difluorophenacyl analogues

Raj N. Misra; Hai-Yun Xiao; David B. Rawlins; Weifang Shan; Kristen A. Kellar; Janet G. Mulheron; John S. Sack; John S. Tokarski; S. David Kimball; Kevin R. Webster

Structure-activity studies of 1H-pyrazolo[3,4-b]pyridine 1 have resulted in the discovery of potent CDK1/CDK2 selective inhibitor 21h, BMS-265246 (CDK1/cycB IC(50)=6 nM, CDK2/cycE IC(50)=9 nM). The 2,6-difluorophenyl substitution was critical for potent inhibitory activity. A solid state structure of 21j, a close di-fluoro analogue, bound to CDK2 shows the inhibitor resides coincident with the ATP purine binding site and forms important H-bonds with Leu83 on the protein backbone.


Cancer Research | 2009

Discovery of BMS-641988, a Novel and Potent Inhibitor of Androgen Receptor Signaling for the Treatment of Prostate Cancer

Ricardo M. Attar; Maria Jure-Kunkel; Aaron Balog; Mary Ellen Cvijic; Janet Dell-John; Cheryl A. Rizzo; Liang Schweizer; Thomas Spires; J. Suso Platero; Mary T. Obermeier; Weifang Shan; Mark E. Salvati; William R. Foster; Joseph E. Dinchuk; Shen-Jue Chen; Gregory D. Vite; Robert Kramer; Marco M. Gottardis

Despite an excellent initial response to first-line hormonal treatment, most patients with metastatic prostate cancer will succumb to a hormone-refractory form of the disease. Because these tumors are still dependent on a functional androgen receptor (AR), there is a need to find novel and more potent antiandrogens. While searching for small molecules that bind to the AR and inhibit its transcriptional activity, BMS-641988 was discovered. This novel antiandrogen showed an increased (>1 log) potency compared with the standard antiandrogen, bicalutamide, in both binding affinity to the AR and inhibition of AR-mediated transactivation in cell-based reporter assays. In mature rats, BMS-641988 strongly inhibited androgen-dependent growth of the ventral prostate and seminal vesicles. In the CWR-22-BMSLD1 human prostate cancer xenograft model, BMS-641988 showed increased efficacy over bicalutamide (average percent tumor growth inhibition >90% versus <50%), even at exposure levels of bicalutamide 3-fold greater than what can be attained in humans. Furthermore, BMS-641988 was efficacious in CWR-22-BMSLD1 tumors initially refractory to treatment with bicalutamide. BMS-641988 was highly efficacious in the LuCaP 23.1 human prostate xenograft model, inducing stasis throughout the approximately 30-day dosing. To explore the functional mechanisms of BMS-641988, gene expression profiling analysis was done on CWR-22-BMSLD1 xenograft models in mice. Treatment with BMS-641988 resulted in a global gene expression profile more similar to castration compared with that of bicalutamide. Overall, these data highlight that the unique preclinical profile of BMS-641988 may provide additional understanding for the hormonal treatment of prostate cancer.


Bioorganic & Medicinal Chemistry Letters | 2003

1H-Pyrazolo[3,4-b]pyridine Inhibitors of Cyclin-Dependent Kinases

Raj N. Misra; David B. Rawlins; Hai-Yun Xiao; Weifang Shan; Isia Bursuker; Kristin A. Kellar; Janet G. Mulheron; John S. Sack; John S. Tokarski; S. David Kimball; Kevin R. Webster

1H-Pyrazolo[3,4-b]pyridine 3 (SQ-67563) has been shown to be a potent, selective inhibitor of CDK1/CDK2 in vitro. In cells 3 acts as a cytotoxic agent with the ability to block cell cycle progression and/or induce apoptosis. The solid state structure of 3 bound to CDK2 shows 3 resides coincident with the ATP purine binding site and forms important H-bonding interactions with Leu83 on the protein backbone.


ACS Medicinal Chemistry Letters | 2015

Discovery of Clinical Candidate BMS-906024: A Potent Pan-Notch Inhibitor for the Treatment of Leukemia and Solid Tumors.

Ashvinikumar V. Gavai; Claude A. Quesnelle; Derek J. Norris; Wen-Ching Han; Patrice Gill; Weifang Shan; Aaron Balog; Ke Chen; Andrew J. Tebben; Richard Rampulla; Dauh-Rurng Wu; Yingru Zhang; Arvind Mathur; Ronald E. White; Anne Rose; Haiqing Wang; Zheng Yang; Asoka Ranasinghe; Celia D’Arienzo; Victor R. Guarino; Lan Xiao; Ching Su; Gerry Everlof; Vinod Arora; Ding Ren Shen; Mary Ellen Cvijic; Krista Menard; Mei-Li Wen; Jere E. Meredith; George L. Trainor

Structure-activity relationships in a series of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides identified highly potent inhibitors of γ-secretase mediated signaling of Notch1/2/3/4 receptors. On the basis of its robust in vivo efficacy at tolerated doses in Notch driven leukemia and solid tumor xenograft models, 12 (BMS-906024) was selected as a candidate for clinical evaluation.


Journal of the American Chemical Society | 2014

Chemically Synthesized Molecules with the Targeting and Effector Functions of Antibodies

Patrick J. McEnaney; Kelly J. Fitzgerald; Andrew Zhang; Eugene F. Douglass; Weifang Shan; Aaron Balog; Mariya D. Kolesnikova; David Spiegel

This article reports the design, synthesis, and evaluation of a novel class of molecules of intermediate size (approximately 7000 Da), which possess both the targeting and effector functions of antibodies. These compounds—called synthetic antibody mimics targeting prostate cancer (SyAM-Ps)—bind simultaneously to prostate-specific membrane antigen and Fc gamma receptor I, thus eliciting highly selective cancer cell phagocytosis. SyAMs have the potential to combine the advantages of both small-molecule and biologic therapies, and may address many drawbacks associated with available treatments for cancer and other diseases.


Bioorganic & Medicinal Chemistry Letters | 2008

Identification and optimization of a novel series of [2.2.1]-oxabicyclo imide-based androgen receptor antagonists

Mark E. Salvati; Aaron Balog; Weifang Shan; Richard Rampulla; Soren Giese; Tom Mitt; Joseph A. Furch; Gregory D. Vite; Ricardo M. Attar; Maria Jure-Kunkel; Jieping Geng; Cheryl A. Rizzo; Marco M. Gottardis; Stanley R. Krystek; Jack Z. Gougoutas; Michael A. Galella; Mary T. Obermeier; Aberra Fura; Gamini Chandrasena

A novel series of [2.2.1]-oxabicyclo imide-based compounds were identified as potent antagonists of the androgen receptor. Molecular modeling and iterative drug design were applied to optimize this series. The lead compound [3aS-(3aalpha,4beta,5beta,7beta,7aalpha)]-4-(octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-iodobenzonitrile was shown to have potent in vivo efficacy after oral dosing in the CWR22 human prostate tumor xenograph model.


ACS Medicinal Chemistry Letters | 2015

Discovery of BMS-641988, a Novel Androgen Receptor Antagonist for the Treatment of Prostate Cancer

Aaron Balog; Richard Rampulla; Gregory Scott Martin; Stanley R. Krystek; Ricardo M. Attar; Janet Dell-John; John D. Dimarco; David J. Fairfax; Jack Z. Gougoutas; Christian L. Holst; Andrew Nation; Cheryl A. Rizzo; Lana M. Rossiter; Liang Schweizer; Weifang Shan; Steven H. Spergel; Thomas Spires; Georgia Cornelius; Marco M. Gottardis; George L. Trainor; Gregory D. Vite; Mark E. Salvati

BMS-641988 (23) is a novel, nonsteroidal androgen receptor antagonist designed for the treatment of prostate cancer. The compound has high binding affinity for the AR and acts as a functional antagonist in vitro. BMS-641988 is efficacious in multiple human prostate cancer xenograft models, including CWR22-BMSLD1 where it displays superior efficacy relative to bicalutamide. Based on its promising preclinical profile, BMS-641988 was selected for clinical development.


Bioorganic & Medicinal Chemistry Letters | 2010

Design and synthesis of 4-[3,5-dioxo-11-oxa-4,9-diazatricyclo[5.3.1.02,6]undec-4-yl]-2-trifluoromethyl-benzonitriles as androgen receptor antagonists

Hai-Yun Xiao; Aaron Balog; Ricardo M. Attar; David J. Fairfax; Linda Fleming; Christian L. Holst; Gregory Scott Martin; Lana M. Rossiter; Jing Chen; Mary-Ellen Cvjic; Janet Dell-John; Jieping Geng; Marco M. Gottardis; Wen-Ching Han; Andrew Nation; Mary T. Obermeier; Cheryl A. Rizzo; Liang Schweizer; Thomas Spires; Weifang Shan; Ashvinikumar V. Gavai; Mark E. Salvati; Gregory D. Vite

A novel series of 4-[3,5-dioxo-11-oxa-4,9-diazatricyclo[5.3.1.0(2,6)]undec-4-yl]-2-trifluoromethyl-benzonitriles has been synthesized. The ability of these compounds to act as antagonists of the androgen receptor was investigated and several were found to have potent activity in vitro and in vivo.


Bioorganic & Medicinal Chemistry Letters | 2018

Development of a series of novel o-phenylenediamine-based indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors

David K. Williams; Jay A. Markwalder; Aaron Balog; Bin Chen; Libing Chen; Jennifer Donnell; Lauren Haque; Amy C. Hart; Sunil K. Mandal; Andrew Nation; Weifang Shan; Gregory D. Vite; Kelly Covello; John T. Hunt; Maria N. Jure-Kunkel; Steven P. Seitz

A novel series of o-phenylenediamine-based inhibitors of indoleamine 2,3-dioxygenase (IDO) has been identified. IDO is a heme-containing enzyme, overexpressed in the tumor microenvironment of many cancers, which can contribute to the suppression of the host immune system. Synthetic modifications to a previously described diarylether series resulted in an additional degree of molecular diversity which was exploited to afford compounds that demonstrated significant potency in the HeLa human cervical cancer IDO1 assay. .


Bioorganic & Medicinal Chemistry Letters | 2016

[2.2.1]-Bicyclic sultams as potent androgen receptor antagonists

Weifang Shan; Aaron Balog; Andrew Nation; Xiao Zhu; Jing Chen; Mary Ellen Cvijic; Jieping Geng; Cheryl A. Rizzo; Thomas Spires; Ricardo M. Attar; Mary T. Obermeier; Sarah C. Traeger; Jun Dai; Yingru Zhang; Michael A. Galella; George L. Trainor; Gregory D. Vite; Ashvinikumar V. Gavai

This letter describes the discovery, synthesis, SAR, and biological activity of [2.2.1]-bicyclic sultams as potent antagonists of the androgen receptor. Optimization of the series led to the identification of compound 25, which displayed robust pharmacodynamic effects in rats after oral dosing.

Collaboration


Dive into the Weifang Shan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge