Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weifeng Yuan is active.

Publication


Featured researches published by Weifeng Yuan.


Nanoscale Research Letters | 2012

Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites

Bin Hu; Ning Hu; Yuan Li; Kentaro Akagi; Weifeng Yuan; Tomonori Watanabe; Yong Cai

In this work, we propose a comprehensive multi-scale three-dimensional (3D) resistor network numerical model to predict the piezoresistivity behavior of a nanocomposite material composed of an insulating polymer matrix and conductive carbon nanotubes (CNTs). This material is expected to be used as highly sensitive resistance-type strain sensors due to its high piezoresistivity defined as the resistance change ratio divided by the mechanical strain. In this multi-scale 3D numerical model, three main working mechanisms, which are well known to induce the piezoresistivity of strain sensors fabricated from nanocomposites, are for the first time considered systematically. They are (a) the change of the internal conductive network formed by the CNTs, (b) the tunneling effect among neighboring CNTs, and (c) the CNTs’ piezoresistivity. Comparisons between the present numerical results and our previous experimental ones were also performed to validate the present numerical model. The influence of the CNTs’ piezoresistivity on the total piezoresistivity of nanocomposite strain sensors is explored in detail and further compared with that of the other two mechanisms. It is found that the first two working mechanisms (i.e., the change of the internal conductive network and the tunneling effect) play a major role on the piezoresistivity of the nanocomposite strain sensors, whereas the contribution from the CNTs’ piezoresistivity is quite small. The present numerical results can provide valuable information for designing highly sensitive resistance-type strain sensors made from various nanocomposites composed of an insulating polymer matrix and conductive nanofillers.


Journal of Physics D | 2014

Improved piezoelectricity of PVDF-HFP/carbon black composite films

Liangke Wu; Weifeng Yuan; Ning Hu; Zhongchang Wang; Chunlin Chen; Jianhui Qiu; Ji Ying; Yuan Li

We report a substantial improvement of piezoelectricity for poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) copolymer films by introducing carbon black (CB) into the PVDF-HFP to form PVDF-HFP/CB composite films. The optimized output voltage of the composite film at an optimal CB content of 0.5 wt% is found to be 204% of the pristine PVDF-HFP film. Its harvested electrical power density is 464% and 561% of the pristine PVDF-HFP film by using ac and dc circuits, respectively. Through Fourier transform infrared spectroscopy analysis, differential scanning calorimetry analysis, and polarized optical microscopy observations, we clarify the enhancement mechanism of piezoelectricity for the PVDF-HFP/CB composite films. We find that the added CB acts as nucleating agent during the initial formation of crystals, but imposes an insignificant effect on the α–β phase transformation during stretching. We also demonstrate that the addition of optimal CB reduces crystal size yet increases the number of crystals in the composite films. This is beneficial for the formation of elongated, oriented and fibrillar crystalline morphology during stretching and consequently results in a highly efficient poling process. The addition of overdosed CB leads to the formation of undersized crystals, lowered crystallinity, and hence reduced piezoelectric performance of the PVDF-HFP/CB composite films.


Sensors | 2014

Damage evaluation based on a wave energy flow map using multiple PZT sensors.

Yaolu Liu; Ning Hu; Hong Xu; Weifeng Yuan; Cheng Yan; Yuan Li; Riu Goda; Alamusi; Jinhao Qiu; Huiming Ning; Liangke Wu

A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Bettis reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.


Nanoscale Research Letters | 2013

Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites

Alamusi; Ning Hu; Jianhui Qiu; Yuan Li; Christiana Chang; Satoshi Atobe; Hisao Fukunaga; Yaolu Liu; Huiming Ning; Liangke Wu; Jinhua Li; Weifeng Yuan; Tomonori Watanabe; Cheng Yan; Yajun Zhang

In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.


Applied Physics Letters | 2013

Ultrasensitive strain sensors of multiwalled carbon nanotube/epoxy nanocomposite using dielectric loss tangent

Alamusi; Weifeng Yuan; Surina; Yuan Li; Ning Hu; H. M. Ning; Y. L. Liu; Liangke Wu; Satoshi Atobe; Hisao Fukunaga

In this work, the dielectric loss tangent (tan δ) of a series of strain sensors, fabricated from an epoxy nanocomposite with multi-wall carbon nanotube (MWCNT) content varying at 1 wt. % – 5 wt. %, was characterized experimentally. The effects of four parameters including frequency, strain of nanocomposite, MWCNT content, and loading voltage were investigated extensively. Moreover, an alternative current gauge factor KAC was developed. The largest value of KAC was found to be 256 for the nanocomposite strain sensor with 1 wt. % MWCNT content at 0.6% tensile strain, which indicates the ultra-sensitivity of the present strain sensor.


Advanced Composite Materials | 2013

Enhancement of PVDF’s piezoelectricity by VGCF and MWNT

Liangke Wu; Weifeng Yuan; Takaya Nakamura; Satoshi Atobe; Ning Hu; Hisao Fukunaga; Christiana Chang; Yutaka Zemba; Yuan Li; Tomonori Watanabe; Yaolu Liu; Alamusi; Huiming Ning; Jinhua Li; Hao Cui; Yajun Zhang

Multi-walled carbon nanotube (MWNT) and vapor grown carbon fiber (VGCF) were blended into poly (vinylidene fluoride) (PVDF) to enhance the piezoelectricity of the neat polymer. The PVDF composite films were prepared by solution casting method, stretched uniaxially and poled in silicon oil. The nanofiller contents range from 0.05 to 0.3 wt.%. Open circuit output voltage and energy harvesting tests indicate that both the PVDF/MWNT and PVDF/VGCF composite films approached the maximum output at the nanofiller content of 0.05 wt.%. Compared to the neat PVDF films, the maximum increasing rates of open circuit voltage and harvested power density are 24% and 47% for the PVDF/MWNT films and 15% and 78% for the PVDF/VGCF films, respectively. X-ray diffraction analysis showed an increase in content of the β phase in the PVDF composites; thus, the piezoelectric properties, which are dependent on β phase content, were enhanced. Stretching of the films leads to the transformation of PVDF from α phase to β phase form. Moreover, the addition of nanofillers, such as MWNT and VGCF, improves this transformation since the nanofillers provide a phase transformation nucleation function.


RSC Advances | 2016

The interfacial mechanical properties of functionalized graphene–polymer nanocomposites

Feng Liu; Ning Hu; Jianyu Zhang; Satoshi Atobe; Shayuan Weng; Huiming Ning; Yaolu Liu; Liangke Wu; Youxuan Zhao; Fuhao Mo; Shao-Yun Fu; Chaohe Xu; Alamusi; Weifeng Yuan

The interfacial mechanical properties between graphene (GR) and a polymer matrix play a key role in load transfer capability for GR/polymer nanocomposites. Grafting of polymer molecular chains on GR can improve the dispersion of the GR in a polymer matrix and change the interfacial mechanical properties between the GR and the polymer matrix. In this work, we investigated the interfacial mechanical properties between GR functionalized with polymer molecular chains and a polyethylene (PE) matrix using molecular dynamics simulations. The influences of grafting density and chain length on the interfacial mechanical properties were analyzed. The results show that grafting of short PE molecular chains on GR can significantly improve the interfacial shear strength and interfacial Mode-II fracture toughness in functionalized GR/PE nanocomposites.


Functional Materials Letters | 2016

Conductive PVDF-HFP/CNT composites for strain sensing

Bin Hu; Yaolu Liu; Ning Hu; Liangke Wu; Huiming Ning; Jianyu Zhang; Shao-Yun Fu; Shang Tang; Chaohe Xu; Feng Liu; Alamusi; Weifeng Yuan

A strain sensor based on the composites of poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) filled by multi-walled carbon nanotube (MWNT) was prepared using a proposed fabrication process. Three kinds of MWNT loadings, i.e., 1.0wt.%, 2.0wt.% and 3.0wt.% were employed. Due to good dispersion state of MWNT in PVDF-HFP matrix, which was characterized by scanning electron microscope (SEM), this sensor was found to be of high sensitivity and stable performance. The sensor’s piezoresistivity varied in a weak nonlinear pattern, which was probably caused by the tunneling effect among neighboring MWNTs. The gauge factor of the sensor of 1.0wt.% MWNT loading was identified to be the highest, i.e., 33. This sensor gauge factor decreased gradually with the increase of addition amount of MWNT, which was 5 for the sensor of 3.0wt.% MWNT loading. This gauge factor was still higher than that of conventional metal-foil strain sensors. The electrical conductivity of PVDF-HFP/MWNT composites was also studied. It was found that with the increase of the addition amount of MWNT, the electrical conductivity of the PVDF-HFP/MWNT composites varied in a perfect percolation pattern with a very low percolation threshold, i.e., 0.77 vol.%, further indicating the very good dispersion of MWNT in the PVDF-HFP matrix.


Archive | 2012

Locating Delamination in Composite Laminated Beams Using the Zero-Order Mode of Lamb Waves

Yaolu Liu; Alamusi; Jinhua Li; Huiming Ning; Liangke Wu; Weifeng Yuan; Bin Gu; Ning Hu

To improve the safety and reliability of various engineering structure, it is essential to develop efficient techniques for non-destructive damage detection or structural health monitoring. Lamb wave can travel a long distance in plate-like and shell-like structures made of materials even with high attenuation ratio (e.g. Carbon Fibre/Epoxy Polymer composites). To take this advantage, many researchers have recently explored the possibility of using Lame waves for damage identification [1]. To date, many developed Lamb wavebased techniques are generally based on so called two-stage prediction models by which the difference in the signals between a defective structure and a benchmark (intact structure) can be evaluated. Then, the residual error is easy to be defined no matter what information extracted from the signals is used, such as the information in time domain [2, 3] or frequency domain [4, 5]. Therefore, a benchmark or baseline signal is essential for the detection, which is very reliable and suitable for monitoring the propagation of damage. Also, tremendous efforts have been put to the delamination identification, which could be treated as a problem of inverse pattern recognition using calibrated numerical methods such as artificial neural network [6]. The interaction between Lamb waves and delamination has also been investigated numerically and theoretically [7-9]. However, the complex wave scattering phenomenon in a delamination area has not been clearly understood in these studies.


Nanotechnology | 2018

Unified equivalent circuit model for carbon nanotube-based nanocomposites

Chaoyang Zhao; Weifeng Yuan; Yangzhou Zhao; Ning Hu; Bin Gu; Haidong Liu; Alamusi

Carbon nanotubes form a complex network in nanocomposites. In the network, the configuration of the nanotubes is various. A carbon nanotube may be curled or straight, and it may be parallel or crossed to another. As a result, carbon nanotube-based composites exhibit integrated characteristics of inductor, capacitor and resistor. In this work, it is hypothesised that carbon nanotube-based composites all adhere to a RLC interior circuit. To verify the hypothesis, three different composites, viz multi-walled carbon nanotube/polyvinylidene fluoride (MWCNT/PVDF), multi-walled carbon nanotube/epoxy (MWCNT/EP), multi-walled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) were fabricated and tested. The resistances and the dielectric loss tangent (tanδ) of the materials were measured in direct and alternating currents. The measurement shows that the value of tanδ is highly affected by the volume fraction of MWCNT in the composites. The experimental results prove that the proposed RLC equivalent circuit model can fully describe the electrical properties of the MWCNT network in nanocomposites. The RLC model provides a new route to detect the inductance and capacitance of carbon nanotubes. Moreover, the model also indicates that the carbon nanotube-based composite films may be used to develop wireless strain sensors.

Collaboration


Dive into the Weifeng Yuan's collaboration.

Top Co-Authors

Avatar

Ning Hu

Chongqing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Gu

Southwest University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge