Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weihsueh A. Chiu is active.

Publication


Featured researches published by Weihsueh A. Chiu.


Environmental Health Perspectives | 2014

Standardizing benchmark dose calculations to improve science-based decisions in human health assessments

Jessica A. Wignall; Andrew J. Shapiro; Fred A. Wright; Tracey J. Woodruff; Weihsueh A. Chiu; Kathryn Z. Guyton; Ivan Rusyn

Background: Benchmark dose (BMD) modeling computes the dose associated with a prespecified response level. While offering advantages over traditional points of departure (PODs), such as no-observed-adverse-effect-levels (NOAELs), BMD methods have lacked consistency and transparency in application, interpretation, and reporting in human health assessments of chemicals. Objectives: We aimed to apply a standardized process for conducting BMD modeling to reduce inconsistencies in model fitting and selection. Methods: We evaluated 880 dose–response data sets for 352 environmental chemicals with existing human health assessments. We calculated benchmark doses and their lower limits [10% extra risk, or change in the mean equal to 1 SD (BMD/L10/1SD)] for each chemical in a standardized way with prespecified criteria for model fit acceptance. We identified study design features associated with acceptable model fits. Results: We derived values for 255 (72%) of the chemicals. Batch-calculated BMD/L10/1SD values were significantly and highly correlated (R2 of 0.95 and 0.83, respectively, n = 42) with PODs previously used in human health assessments, with values similar to reported NOAELs. Specifically, the median ratio of BMDs10/1SD:NOAELs was 1.96, and the median ratio of BMDLs10/1SD:NOAELs was 0.89. We also observed a significant trend of increasing model viability with increasing number of dose groups. Conclusions: BMD/L10/1SD values can be calculated in a standardized way for use in health assessments on a large number of chemicals and critical effects. This facilitates the exploration of health effects across multiple studies of a given chemical or, when chemicals need to be compared, providing greater transparency and efficiency than current approaches. Citation: Wignall JA, Shapiro AJ, Wright FA, Woodruff TJ, Chiu WA, Guyton KZ, Rusyn I. 2014. Standardizing benchmark dose calculations to improve science-based decisions in human health assessments. Environ Health Perspect 122:499–505;u2002http://dx.doi.org/10.1289/ehp.1307539


Environmental Health Perspectives | 2006

Trichloroethylene cancer epidemiology: a consideration of select issues.

Cheryl Siegel Scott; Weihsueh A. Chiu

A large body of epidemiologic evidence exists for exploring causal associations between cancer and trichloroethylene (TCE) exposure. The U.S. Environmental Protection Agency 2001 draft TCE health risk assessment concluded that epidemiologic studies, on the whole, support associations between TCE exposure and excess risk of kidney cancer, liver cancer, and lymphomas, and, to a lesser extent, cervical cancer and prostate cancer. As part of a mini-monograph on key issues in the health risk assessment of TCE, this article reviews recently published scientific literature examining cancer and TCE exposure and identifies four issues that are key to interpreting the larger body of epidemiologic evidence: a) relative sensitivity of cancer incidence and mortality data; b) different classifications of lymphomas, including non-Hodgkin lymphoma; c) differences in data and methods for assigning TCE exposure status; and d) different methods employed for causal inferences, including statistical or meta-analysis approaches. The recent epidemiologic studies substantially expand the epidemiologic database, with seven new studies available on kidney cancer and somewhat fewer studies available that examine possible associations at other sites. Overall, recently published studies appear to provide further support for the kidney, liver, and lymphatic systems as targets of TCE toxicity, suggesting, as do previous studies, modestly elevated (typically 1.5–2.0) site-specific relative risks, given exposure conditions in these studies. However, a number of challenging issues need to be considered before drawing causal conclusions about TCE exposure and cancer from these data.


Environmental Health Perspectives | 2006

Key Scientific Issues in the Health Risk Assessment of Trichloroethylene

Weihsueh A. Chiu; Jane C. Caldwell; Nagalakshmi Keshava; Cheryl Siegel Scott

Trichloroethylene (TCE) is a common environmental contaminant at hazardous waste sites and in ambient and indoor air. Assessing the human health risks of TCE is challenging because of its inherently complex metabolism and toxicity and the widely varying perspectives on a number of critical scientific issues. Because of this complexity, the U.S. Environmental Protection Agency (EPA) drew upon scientific input and expertise from a wide range of groups and individuals in developing its 2001 draft health risk assessment of TCE. This scientific outreach, which was aimed at engaging a diversity of perspectives rather than developing consensus, culminated in 2000 with 16 state-of-the-science articles published together as an Environmental Health Perspectives supplement. Since that time, a substantial amount of new scientific research has been published that is relevant to assessing TCE health risks. Moreover, a number of difficult or controversial scientific issues remain unresolved and are the subject of a scientific consultation with the National Academy of Sciences coordinated by the White House Office of Science and Technology Policy and co-sponsored by a number of federal agencies, including the U.S. EPA. The articles included in this mini-monograph provide a scientific update on the most prominent of these issues: the pharmacokinetics of TCE and its metabolites, mode(s) of action and effects of TCE metabolites, the role of peroxisome proliferator–activated receptor in TCE toxicity, and TCE cancer epidemiology.


Environmental Health Perspectives | 2013

Addressing human variability in next-generation human health risk assessments of environmental chemicals.

Lauren Zeise; Frédéric Y. Bois; Weihsueh A. Chiu; Dale Hattis; Ivan Rusyn; Kathryn Z. Guyton

Background: Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Objective: Our goal was to explore how next-generation human health risk assessments may better characterize variability in the context of the conceptual framework for the source-to-outcome continuum. Methods: This review was informed by a National Research Council workshop titled “Biological Factors that Underlie Individual Susceptibility to Environmental Stressors and Their Implications for Decision-Making.” We considered current experimental and in silico approaches, and emerging data streams (such as genetically defined human cells lines, genetically diverse rodent models, human omic profiling, and genome-wide association studies) that are providing new types of information and models relevant for assessing interindividual variability for application to human health risk assessments of environmental chemicals. Discussion: One challenge for characterizing variability is the wide range of sources of inherent biological variability (e.g., genetic and epigenetic variants) among individuals. A second challenge is that each particular pair of health outcomes and chemical exposures involves combinations of these sources, which may be further compounded by extrinsic factors (e.g., diet, psychosocial stressors, other exogenous chemical exposures). A third challenge is that different decision contexts present distinct needs regarding the identification—and extent of characterization—of interindividual variability in the human population. Conclusions: Despite these inherent challenges, opportunities exist to incorporate evidence from emerging data streams for addressing interindividual variability in a range of decision-making contexts.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2008

Approaches for Applications of Physiologically Based Pharmacokinetic Models in Risk Assessment

Chad M. Thompson; Babasaheb Sonawane; Hugh A. Barton; Robert S. DeWoskin; John C. Lipscomb; Paul M. Schlosser; Weihsueh A. Chiu; Kannan Krishnan

Physiologically based pharmacokinetic (PBPK) models are particularly useful for simulating exposures to environmental toxicants for which, unlike pharmaceuticals, there is often little or no human data available to estimate the internal dose of a putative toxic moiety in a target tissue or an appropriate surrogate. This article reviews the current state of knowledge and approaches for application of PBPK models in the process of deriving reference dose, reference concentration, and cancer risk estimates. Examples drawn from previous U.S. Environmental Protection Agency (EPA) risk assessments and human health risk assessments in peer-reviewed literature illustrate the ways and means of using PBPK models to quantify the pharmacokinetic component of the interspecies and intraspecies uncertainty factors as well as to conduct route to route, high dose to low dose and duration extrapolations. The choice of the appropriate dose metric is key to the use of the PBPK models for the various applications in risk assessment. Issues related to whether uncertainty factors are most appropriately applied before or after derivation of human equivalent dose (or concentration) continue to be explored. Scientific progress in the understanding of life stage and genetic differences in dosimetry and their impacts on variability in susceptibility, as well as ongoing development of analytical methods to characterize uncertainty in PBPK models, will make their use in risk assessment increasingly likely. As such, it is anticipated that when PBPK models are used to express adverse tissue responses in terms of the internal target tissue dose of the toxic moiety rather than the external concentration, the scientific basis of, and confidence in, risk assessments will be enhanced.


Pharmacology & Therapeutics | 2014

Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard

Ivan Rusyn; Weihsueh A. Chiu; Lawrence H. Lash; Hans Kromhout; Johnni Hansen; Kathryn Z. Guyton

The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic studies, bioassays in experimental animals, and toxicity and mechanism of action studies was used to conclude that TCE is carcinogenic to humans (Group 1). This article summarizes the key evidence forming the scientific bases for the IARC classification. Exposure to TCE from environmental sources (including hazardous waste sites and contaminated water) is common throughout the world. While workplace use of TCE has been declining, occupational exposures remain of concern, especially in developing countries. The strongest human evidence is from studies of occupational TCE exposure and kidney cancer. Positive, although less consistent, associations were reported for liver cancer and non-Hodgkin lymphoma. TCE is carcinogenic at multiple sites in multiple species and strains of experimental animals. The mechanistic evidence includes extensive data on the toxicokinetics and genotoxicity of TCE and its metabolites. Together, available evidence provided a cohesive database supporting the human cancer hazard of TCE, particularly in the kidney. For other target sites of carcinogenicity, mechanistic and other data were found to be more limited. Important sources of susceptibility to TCE toxicity and carcinogenicity were also reviewed by the Working Group. In all, consideration of the multiple evidence streams presented herein informed the IARC conclusions regarding the carcinogenicity of TCE.


Toxicology and Applied Pharmacology | 2013

Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment

Vickie S. Wilson; Nagalakshmi Keshava; Susan D. Hester; Deborah Segal; Weihsueh A. Chiu; Chad M. Thompson; Susan Y. Euling

The predominant role of toxicogenomic data in risk assessment, thus far, has been one of augmentation of more traditional in vitro and in vivo toxicology data. This article focuses on the current available examples of instances where toxicogenomic data has been evaluated in human health risk assessment (e.g., acetochlor and arsenicals) which have been limited to the application of toxicogenomic data to inform mechanism of action. This article reviews the regulatory policy backdrop and highlights important efforts to ultimately achieve regulatory acceptance. A number of research efforts on specific chemicals that were designed for risk assessment purposes have employed mechanism or mode of action hypothesis testing and generating strategies. The strides made by large scale efforts to utilize toxicogenomic data in screening, testing, and risk assessment are also discussed. These efforts include both the refinement of methodologies for performing toxicogenomics studies and analysis of the resultant data sets. The current issues limiting the application of toxicogenomics to define mode or mechanism of action in risk assessment are discussed together with interrelated research needs. In summary, as chemical risk assessment moves away from a single mechanism of action approach toward a toxicity pathway-based paradigm, we envision that toxicogenomic data from multiple technologies (e.g., proteomics, metabolomics, transcriptomics, supportive RT-PCR studies) can be used in conjunction with one another to understand the complexities of multiple, and possibly interacting, pathways affected by chemicals which will impact human health risk assessment.


Risk Analysis | 2006

Steady-State Solutions to PBPK Models and Their Applications to Risk Assessment I: Route-to-Route Extrapolation of Volatile Chemicals

Weihsueh A. Chiu; Paul A. White

Although analysis of in vivo pharmacokinetic data necessitates use of time-dependent physiologically-based pharmacokinetic (PBPK) models, risk assessment applications are often driven primarily by steady-state and/or integrated (e.g., AUC) dosimetry. To that end, we present an analysis of steady-state solutions to a PBPK model for a generic volatile chemical metabolized in the liver. We derive an equivalent model that is much simpler and contains many fewer parameters than the full PBPK model. The state of the system can be specified by two state variables-the rate of metabolism and the rate of clearance by exhalation. For a given oral dose rate or inhalation exposure concentration, the system state only depends on the blood-air partition coefficient, metabolic constants, and the rates of blood flow to the liver and of alveolar ventilation. At exposures where metabolism is close to linear, only the effective first-order metabolic rate is needed. Furthermore, in this case, the relationship between cumulative exposure and average internal dose (e.g., AUCs) remains the same for time-varying exposures. We apply our analysis to oral-inhalation route extrapolation, showing that for any dose metric, route equivalence only depends on the parameters that determine the system state. Even if the appropriate dose metric is unknown, bounds can be placed on the route-to-route equivalence with very limited data. We illustrate this analysis by showing that it reproduces exactly the PBPK-model-based route-to-route extrapolation in EPAs 2000 risk assessment for vinyl chloride. Overall, we find that in many cases, steady-state solutions exactly reproduce or closely approximate the solutions using the full PBPK model, while being substantially more transparent. Subsequent work will examine the utility of steady-state solutions for analyzing cross-species extrapolation and intraspecies variability.


Environmental Health Perspectives | 2010

What Role for Biologically Based Dose–Response Models in Estimating Low-Dose Risk?

Kenny S. Crump; Chao-Yeh Chen; Weihsueh A. Chiu; Thomas A. Louis; Christopher J. Portier; Ravi P. Subramaniam; Paul D. White

Background Biologically based dose–response (BBDR) models can incorporate data on biological processes at the cellular and molecular level to link external exposure to an adverse effect. Objectives Our goal was to examine the utility of BBDR models in estimating low-dose risk. Methods We reviewed the utility of BBDR models in risk assessment. Results BBDR models have been used profitably to evaluate proposed mechanisms of toxicity and identify data gaps. However, these models have not improved the reliability of quantitative predictions of low-dose human risk. In this commentary we identify serious impediments to developing BBDR models for this purpose. BBDR models do not eliminate the need for empirical modeling of the relationship between dose and effect, but only move it from the whole organism to a lower level of biological organization. However, in doing this, BBDR models introduce significant new sources of uncertainty. Quantitative inferences are limited by inter- and intraindividual heterogeneity that cannot be eliminated with available or reasonably anticipated experimental techniques. BBDR modeling does not avoid uncertainties in the mechanisms of toxicity relevant to low-level human exposures. Although implementation of BBDR models for low-dose risk estimation have thus far been limited mainly to cancer modeled using a two-stage clonal expansion framework, these problems are expected to be present in all attempts at BBDR modeling. Conclusions The problems discussed here appear so intractable that we conclude that BBDR models are unlikely to be fruitful in reducing uncertainty in quantitative estimates of human risk from low-level exposures in the foreseeable future. Use of in vitro data from recent advances in molecular toxicology in BBDR models is not likely to remove these problems and will introduce new issues regarding extrapolation of data from in vitro systems.


Environmental Health Perspectives | 2006

Issues in the pharmacokinetics of trichloroethylene and its metabolites.

Weihsueh A. Chiu; Miles S. Okino; John C. Lipscomb; Marina V. Evans

Much progress has been made in understanding the complex pharmacokinetics of trichloroethylene (TCE). Qualitatively, it is clear that TCE is metabolized to multiple metabolites either locally or into systemic circulation. Many of these metabolites are thought to have toxicologic importance. In addition, efforts to develop physiologically based pharmacokinetic (PBPK) models have led to a better quantitative assessment of the dosimetry of TCE and several of its metabolites. As part of a mini-monograph on key issues in the health risk assessment of TCE, this article is a review of a number of the current scientific issues in TCE pharmacokinetics and recent PBPK modeling efforts with a focus on literature published since 2000. Particular attention is paid to factors affecting PBPK modeling for application to risk assessment. Recent TCE PBPK modeling efforts, coupled with methodologic advances in characterizing uncertainty and variability, suggest that rigorous application of PBPK modeling to TCE risk assessment appears feasible at least for TCE and its major oxidative metabolites trichloroacetic acid and trichloroethanol. However, a number of basic structural hypotheses such as enterohepatic recirculation, plasma binding, and flow- or diffusion-limited treatment of tissue distribution require additional evaluation and analysis. Moreover, there are a number of metabolites of potential toxicologic interest, such as chloral, dichloroacetic acid, and those derived from glutathione conjugation, for which reliable pharmacokinetic data is sparse because of analytical difficulties or low concentrations in systemic circulation. It will be a challenge to develop reliable dosimetry for such cases.

Collaboration


Dive into the Weihsueh A. Chiu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathryn Z. Guyton

International Agency for Research on Cancer

View shared research outputs
Top Co-Authors

Avatar

Nagalakshmi Keshava

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Chad M. Thompson

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Cheryl Siegel Scott

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Frédéric Y. Bois

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jane C. Caldwell

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

John C. Lipscomb

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Paul A. White

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Ravi P. Subramaniam

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge