Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weihuang Yang is active.

Publication


Featured researches published by Weihuang Yang.


ACS Nano | 2014

Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Monolayer WS2

Namphung Peimyoo; Weihuang Yang; Jingzhi Shang; Xiaonan Shen; Yanlong Wang; Ting Yu

Monolayer (1L) semiconducting transition metal dichacogenides (TMDs) possess remarkable physical and optical properties, promising for a wide range of applications from nanoelectronics to optoelectronics such as light-emitting and sensing devices. Here we report how the molecular adsorption can modulate the light emission and electrical properties of 1L WS2. The dependences of trion and exciton emission on chemical doping are investigated in 1L WS2 by microphotoluminescence (μPL) measurements, where different responses are observed and simulated theoretically. The total PL is strongly enhanced when electron-withdrawing molecules adsorb on 1L WS2, which is attributed to the increase of the exciton formation due to charge transfer. The electrical transport measurements of a 1L WS2 field effect transistor elucidate the effect of the adsorbates on the conductivity, which give evidence for charge transfer between molecules and 1L WS2. These findings open up many opportunities to manipulate the electrical and optical properties of two-dimensional TMDs, which are particularly important for developing optoelectronic devices for chemical and biochemical sensing applications.


Nano Research | 2015

Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy

Namphung Peimyoo; Jingzhi Shang; Weihuang Yang; Yanlong Wang; Chunxiao Cong; Ting Yu

We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E2g1 and A1g Raman modes. The first-order temperature coefficients of E2g1 and A1g modes in both supported and suspended WS2 layers were extracted. The frequency shift of the A1g mode with temperature is larger than that of the E2g1 mode for 1L-WS2, which is attributed to stronger electron-phonon coupling for the A1g mode than that for the E2g1 mode. Moreover, by use of the shift of the phonon mode induced by laser heating, the thermal conductivities at room temperature were estimated to be 32 and 53 W/(m·K) for 1L- and 2L-WS2, respectively. Our results provide fundamental information about the thermal properties of WS2 layers, which is crucial for developing applications of atomically-thin WS2 devices.


Nano Research | 2015

Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2

Yanlong Wang; Chunxiao Cong; Weihuang Yang; Jingzhi Shang; Namphung Peimyoo; Yu Chen; Junyong Kang; Jian-Pu Wang; Wei Huang; Ting Yu

In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (Γ-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E’ mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.


Nano Letters | 2016

Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2

Weihuang Yang; Jingzhi Shang; Jian-Pu Wang; Xiaonan Shen; Bingchen Cao; Namphung Peimyoo; Chenji Zou; Yu Chen; Yanlong Wang; Chunxiao Cong; Wei Huang; Ting Yu

Owing to direct band gap and strong spin-orbit coupling, monolayer transition-metal dichalcogenides (TMDs) exhibit rich new physics and great applicable potentials. The remarkable valley contrast and light emission promise such two-dimensional (2D) semiconductors a bright future of valleytronics and light-emitting diodes (LEDs). Though the electroluminescence (EL) has been observed in mechanically exfoliated small flakes of TMDs, considering real applications, a strategy that could offer mass-product and high compatibility is greatly demanded. Large-area and high-quality samples prepared by chemical vapor deposition (CVD) are perfect candidates toward such goal. Here, we report the first demonstration of electrically tunable chiral EL from CVD-grown monolayer WS2 by constructing a p-i-n heterojunction. The chirality contrast of the overall EL reaches as high as 81% and can be effectively modulated by forward current. The success of fabricating valley LEDs based on CVD WS2 opens up many opportunities for developing large-scale production of unconventional 2D optoelectronic devices.


Nano Research | 2015

Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus

Yanlong Wang; Chunxiao Cong; Ruixiang Fei; Weihuang Yang; Yu Chen; Bingchen Cao; Li Yang; Ting Yu

Black phosphorus (BP) is a good candidate for studying strain effects on twodimensional (2D) materials beyond graphene and transition-metal dichalcogenides. This is because of its particular ability to sustain high strain and remarkably anisotropic mechanical properties resulting from its unique puckered structure. We here investigate the dependence of lattice vibrational frequencies on crystallographic orientations in uniaxially strained few-layer BP by in-situ strained Raman spectroscopy. The out-of-plane A1g mode is sensitive to uniaxial strain along the near-armchair direction whereas the in-plane B2g and A2g modes are sensitive to strain in the near-zigzag direction. For uniaxial strains applied away from these directions, all three phonon modes are linearly redshifted. Our experimental observation is explained by the anisotropic influence of uniaxial tensile strain on structural properties of BP using density functional theory. This study demonstrates the possibility of selective tuning of in-plane and out-of-plane phonon modes in BP by uniaxial strain and makes strain engineering a promising avenue for extensively modulating the optical and mechanical properties of 2D materials.


Journal of Chemical Physics | 2015

Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2

Changjie Zhou; Weihuang Yang; Huili Zhu

Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.


Scientific Reports | 2015

High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability

Weihuang Yang; Jinchai Li; Yong Zhang; Po-Kai Huang; Tien-Chang Lu; Hao-Chung Kuo; Shuping Li; Xu Yang; Hangyang Chen; Dayi Liu; Junyong Kang

High internal efficiency and high temperature stability ultraviolet (UV) light-emitting diodes (LEDs) at 308 nm were achieved using high density (2.5 × 109 cm−2) GaN/AlN quantum dots (QDs) grown by MOVPE. Photoluminescence shows the characteristic behaviors of QDs: nearly constant linewidth and emission energy, and linear dependence of the intensity with varying excitation power. More significantly, the radiative recombination was found to dominant from 15 to 300 K, with a high internal quantum efficiency of 62% even at room temperature.


Applied Physics Letters | 2009

Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN /AlyGa1-yN superlattices

Jinchai Li; Weihuang Yang; Shuping Li; Hangyang Chen; Dayi Liu; Junyong Kang

National Natural Science Foundation [60827004, 60776066, 90921002]; Science and Technology program of Fujian and Xiamen of China


Journal of Physics D | 2015

Theoretical study of the interaction of electron donor and acceptor molecules with monolayer WS2

Changjie Zhou; Weihuang Yang; Yaping Wu; Wei Lin; Huili Zhu

With the aim of understanding recent experimental data concerning molecular doping in WS2-based FET gas sensors, we have investigated the interaction of NH3 and H2O molecules with monolayer WS2, by means of first-principles calculations. The structural relaxations and total energy calculations are performed to determine the preferential binding configurations and it is found that both NH3 and H2O molecules are physisorbed on monolayer WS2. The Bader analysis combined with the plane-averaged differential charge density results indicate that NH3 acts as the electron donor, while H2O acts as the electron acceptor, leading to n- and p-type doping of WS2, respectively. The charge transfer mechanism is discussed in light of the mixing of the molecular highest occupied molecular orbital and lowest unoccupied molecular orbital with the underlying WS2 orbitals. In addition, the modification of the work function is found to be almost linearly dependent on the total charge transfer. The modification of the work function and the carrier concentration can be obtained by tuning the molecule coverages, without destroying the band structure of monolayer WS2. The electrical sensitivities to the gas adsorption make WS2 a gas sensor that promises wide-ranging applications.


Journal of Materials Research | 2010

Growth and characterization of type II ZnO/ZnSe core/shell nanowire arrays

Jinjian Zheng; Zhiming Wu; Weihuang Yang; Shuping Li; Junyong Kang

Type II ZnO/ZnSe core/shell nanowire arrays were grown by a two-step chemical vapor deposition. The nanowire arrays with dense nanoislands on the surface are well aligned and normal to the substrate imaged by scanning electron microscopy. The core/shell structure of nanowires was identified by a high-resolution transmission electron microscopy. The structure and composition of the shell were confirmed to be wurtzite ZnSe by x-ray diffraction, Raman scattering and energy-dispersive x-ray spectroscopy. Moreover, an intense emission was observed at 1.89 eV smaller than the band gaps of core and shell materials by photoluminescence, indicating the achievement of the type II band alignment at the interface. This study is expected to contribute to the potential applications in novel photovoltaic devices.

Collaboration


Dive into the Weihuang Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ting Yu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Jinchai Li

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge