Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weijia Yuan is active.

Publication


Featured researches published by Weijia Yuan.


IEEE Transactions on Applied Superconductivity | 2014

Computation of Losses in HTS Under the Action of Varying Magnetic Fields and Currents

Francesco Grilli; Enric Pardo; Antti Stenvall; Doan N. Nguyen; Weijia Yuan; Fedor Gömöry

Numerical modeling of superconductors is widely recognized as a powerful tool for interpreting experimental results, understanding physical mechanisms, and predicting the performance of high-temperature-superconductor (HTS) tapes, wires, and devices. This is particularly true for ac loss calculation since a sufficiently low ac loss value is imperative to make these materials attractive for commercialization. In recent years, a large variety of numerical models, which are based on different techniques and implementations, has been proposed by researchers around the world, with the purpose of being able to estimate ac losses in HTSs quickly and accurately. This paper presents a literature review of the methods for computing ac losses in HTS tapes, wires, and devices. Technical superconductors have a relatively complex geometry (filaments, which might be twisted or transposed, or layers) and consist of different materials. As a result, different loss contributions exist. In this paper, we describe the ways of computing such loss contributions, which include hysteresis losses, eddy-current losses, coupling losses, and losses in ferromagnetic materials. We also provide an estimation of the losses occurring in a variety of power applications.


Journal of Applied Physics | 2012

Study of second generation, high-temperature superconducting coils: Determination of critical current

Min Zhang; Jae-Ho Kim; Sastry Pamidi; Michal Chudy; Weijia Yuan; T. A. Coombs

This paper presents the modeling of second generation (2 G) high-temperature superconducting (HTS) pancake coils using finite element method. The axial symmetric model can be used to calculate current and magnetic field distribution inside the coil. The anisotropic characteristics of 2 G tapes are included in the model by direct interpolation. The model is validated by comparing to experimental results. We use the model to study critical currents of 2 G coils and find that 100 μV/m is too high a criterion to determine long-term operating current of the coils, because the innermost turns of a coil will, due to the effect of local magnetic field, reach their critical current much earlier than outer turns. Our modeling shows that an average voltage criterion of 20 μV/m over the coil corresponds to the point at which the innermost turns’ electric field exceeds 100 μV/m. So 20 μV/m is suggested to be the critical current criterion of the HTS coil. The influence of background field on the coil critical current ...


Superconductor Science and Technology | 2009

A model for calculating the AC losses of second-generation high temperature superconductor pancake coils

Weijia Yuan; A.M. Campbell; T. A. Coombs

A model is presented for calculating the AC losses of a stack of second-generation high temperature superconductor tapes. This model takes as a starting point the model of Clem and co-workers for a stack in which each tape carries the same current. It is based on the assumption that the magnetic flux lines lie parallel to the tapes within the part of the stack where the flux has not penetrated. In this paper we allow for the depth of penetration of field to vary across the stack, and use the Kim model to allow for the variation of Jc with B. The model is applied to the cases of a transport current and an applied field. For a transport current the calculated result differs from the Norris expression for a single tape carrying a uniform current and it does not seem possible to define a suitable average Jc which could be used. Our method also gives a more accurate value for the critical current of the stack than other methods. For an applied field the stack behaves as a solid superconductor with the Jc averaged locally over several tapes, but still allowed to vary throughout the stack on a larger scale. For up to about ten tapes the losses rise rapidly with the number of tapes, but in thicker stacks the tapes shield each other and the losses become that of a slab with a field parallel to the faces.


IEEE Transactions on Applied Superconductivity | 2010

Design and Test of a Superconducting Magnetic Energy Storage (SMES) Coil

Weijia Yuan; Wei Xian; Mark Douglas Ainslie; Zhiyong Hong; Yu Yan; R Pei; Y Jiang; T. A. Coombs

This paper presents an SMES coil which has been designed and tested by University of Cambridge. The design gives the maximum stored energy in the coil which has been wound by a certain length of second-generation high-temperature superconductors (2G HTS). A numerical model has been developed to analyse the current density and magnetic field distribution and calculate the AC losses during the charge and discharge process of the coil. A cryostat has been designed and a test of the I-V curve measurement of the coil has been accomplished. In addition, the power electronics control of the SMES coil has been simulated.


Superconductor Science and Technology | 2010

Comparison of AC losses, magnetic field/current distributions and critical currents of superconducting circular pancake coils and infinitely long stacks using coated conductors

Weijia Yuan; A.M. Campbell; Zhiyong Hong; Mark Douglas Ainslie; T. A. Coombs

A model is presented for calculating the AC losses, magnetic field/current density distribution and critical currents of a circular superconducting pancake coil. The assumption is that the magnetic flux lines will lie parallel to the wide faces of tapes in the unpenetrated area of the coil. Instead of using an infinitely long stack to approximate the circular coil, this paper gives an exact circular coil model using elliptic integrals. A new efficient numerical method is introduced to yield more accurate and fast computation. The computation results are in good agreement with the assumptions. For a small value of the coil radius, there is an asymmetry along the coil radius direction. As the coil radius increases, this asymmetry will gradually decrease, and the AC losses and penetration depth will increase, but the critical current will decrease. We find that if the internal radius is equal to the winding thickness, the infinitely long stack approximation overestimates the loss by 10% and even if the internal radius is reduced to zero, the error is still only 60%. The infinitely long stack approximation is therefore adequate for most practical purposes. In addition, the comparison result shows that the infinitely long stack approximation saves computation time significantly.


Superconductor Science and Technology | 2014

Study of second-generation high-temperature superconducting magnets: the self-field screening effect

Min Zhang; Weijia Yuan; David K. Hilton; Matthieu Dalban Canassy; U.P. Trociewitz

Second-generation high-temperature superconductors (2G HTS) have high current density in very high magnetic fields. They are good candidates for high field magnets, especially when the magnetic field exceeds the critical fields of low-temperature superconductors. However, the thin and flat geometry of these conductors allows persistent screening currents (or shielding currents) to flow in the conductors. The screening currents caused by the ramping of applied current to the coil is identified as the self-field screening effect. The screening-current-induced magnetic field changes the magnetic field distribution of the magnet, and it also generates drift. This paper employs both experimental and numerical methods to study the mechanism of self-field screening currents for 2G HTS magnets. A 2G HTS magnet was constructed and tested, and a finite element model was built based on the magnet. The comparison between calculation and measurement is presented with detailed analysis. Current distributions inside the HTS magnet are calculated to illustrate the effects of screening. The screening-current-induced magnetic field is quantified by comparing the magnetic field distribution with a baseline copper model. The model is also used to explain the mechanism of the current sweep strategy, which can be used to effectively eliminate screening currents.


IEEE Transactions on Applied Superconductivity | 2016

SMES/Battery Hybrid Energy Storage System for Electric Buses

Jianwei Li; Min Zhang; Qingqing Yang; Zhenyu Zhang; Weijia Yuan

This paper proposes a novel use of superconducting magnetic energy storage (SMES) hybridized with the battery into the electric bus (EB) with the benefit of extending battery lifetime. A new power control algorithm, which integrates a power grading strategy with the filtration control method, is introduced in this paper, achieving further improvement of battery lifetime. To demonstrate the performance of the SMES/battery hybrid energy storage system (HESS), a dynamic EB system is described with the advantage of considering more factors into the driving patterns. Simulation results show that the proposed HESS has successfully combined the SMES with the battery forming an optimal system that has the advantages of primary energy storage systems while complementing the disadvantages of each system. This paper also does the quantitative analysis of battery lifetime extension in the battery-only system, the filtration-based HESS, and the novel control-based HESS.


IEEE Transactions on Applied Superconductivity | 2013

Numerical Analysis of AC Loss Reduction in HTS Superconducting Coils Using Magnetic Materials to Divert Flux

Mark Douglas Ainslie; Weijia Yuan; Tj Flack

In this paper, the use of magnetic materials to divert flux in high-temperature superconductor superconducting coils and reduce transport ac loss is investigated. This particular technique is preferred over other techniques, such as striation, Roebel transposition, and twisted wires because it does not require modification to the conductor itself, which can be detrimental to the properties of the superconductor. The technique can also be implemented for existing coils. The analysis is carried out using a coil model based on the H formulation and implemented in comsol multiphysics. Both weakly and strongly magnetic materials are investigated, and it is shown that the use of such materials can divert flux and achieve a reduction in transport ac loss, which, in some cases, is quite significant. This analysis acts to provide a foundation for further optimization and experimental work in the future.


IEEE Transactions on Applied Superconductivity | 2011

Experimental Research on Dynamic Voltage Sag Compensation Using 2G HTS SMES

Jiahui Zhu; Qiang Cheng; Bin Yang; Weijia Yuan; T. A. Coombs; Ming Qiu

A high temperature superconducting magnetic energy storage system (HT-SMES) is constructed using YBCO coated conductor and is integrated with a cryogenic system using sub-cooled LN2. A closed loop control algorithm, based on the digital signal processor (DSP) TMS320F2812, is proposed using the 2G HT-SMES to compensate dynamic voltage sag in power systems. A dynamic simulation experiment for compensation of instantaneous voltage sag is achieved. The experiment circuit is built using a signal conditioning circuit, a DSP controlling circuit, a power conversion circuit and a SMES unit. Analysis of the voltage waveforms before and after compensation validates that this SMES system is able to compensate instantaneous voltage sag.


IEEE Transactions on Applied Superconductivity | 2011

Theoretical and Experimental Studies on

Weijia Yuan; M. D. Ainslie; W. Xian; Z. Hong; Y. Chen; Y. Yan; R. Pei; T. A. Coombs

This paper begins with introducing the winding techniques of two superconducting double-pancake coils wound using 2G coated conductors. These winding techniques are able to guarantee a good performance for the superconducting coils. Then the coil critical currents were measured and compared with a simulation model. The results were consistent. Finally the coil AC losses were measured using an experimental circuit including a compensation coil. The simulation results are close to the experiment results.

Collaboration


Dive into the Weijia Yuan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiahui Zhu

Electric Power Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Qiu

Electric Power Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. A. Coombs

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sastry Pamidi

Florida State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge