Weili Teng
Chinese Ministry of Education
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weili Teng.
BMC Genomics | 2014
Yan Wang; Yingpeng Han; Weili Teng; Xue Zhao; Yongguang Li; Lin Wu; Dongmei Li; Wenbin Li
BackgroundMapping expression quantitative trait loci (eQTL) of targeted genes represents a powerful and widely adopted approach to identify putative regulatory variants. Linking regulation differences to specific genes might assist in the identification of networks and interactions. The objective of this study is to identify eQTL underlying expression of four gene families encoding isoflavone synthetic enzymes involved in the phenylpropanoid pathway, which are phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), 2-hydroxyisoflavanone synthase (IFS; EC1.14.13.136) and flavanone 3-hydroxylase (F3H; EC 1.14.11.9). A population of 130 recombinant inbred lines (F5:11), derived from a cross between soybean cultivar ‘Zhongdou 27’ (high isoflavone) and ‘Jiunong 20’ (low isoflavone), and a total of 194 simple sequence repeat (SSR) markers were used in this study. Overlapped loci of eQTLs and phenotypic QTLs (pQTLs) were analyzed to identify the potential candidate genes underlying the accumulation of isoflavone in soybean seed.ResultsThirty three eQTLs (thirteen cis-eQTLs and twenty trans-eQTLs) underlying the transcript abundance of the four gene families were identified on fifteen chromosomes. The eQTLs between Satt278-Sat_134, Sat_134-Sct_010 and Satt149-Sat_234 underlie the expression of both IFS and CHS genes. Five eQTL intervals were overlapped with pQTLs. A total of eleven candidate genes within the overlapped eQTL and pQTL were identified.ConclusionsThese results will be useful for the development of marker-assisted selection to breed soybean cultivars with high or low isoflavone contents and for map-based cloning of new isoflavone related genes.
PLOS ONE | 2015
Yan Wang; Yingpeng Han; Xue Ning Zhao; Yongguang Li; Weili Teng; Dongmei Li; Yong Zhan; Wenbin Li
Soybean (Glycine max (L.) Merr.) isoflavone is important for human health and plant defense system. To identify novel quantitative trait loci (QTL) and epistatic QTL underlying isoflavone content in soybean, F5:6, F5:7 and F5:8 populations of 130 recombinant inbred (RI) lines, derived from the cross of soybean cultivar ‘Zhong Dou 27′ (high isoflavone) and ‘Jiu Nong 20′ (low isoflavone), were analyzed with 95 new SSR markers. A new linkage map including 194 SSR markers and covering 2,312 cM with mean distance of about 12 cM between markers was constructed. Thirty four QTL for both individual and total seed isoflavone contents of soybean were identified. Six, seven, ten and eleven QTL were associated with daidzein (DZ), glycitein (GC), genistein (GT) and total isoflavone (TI), respectively. Of them 23 QTL were newly identified. The qTIF_1 between Satt423 and Satt569 shared the same marker Satt569 with qDZF_2, qGTF_1 and qTIF_2. The qGTD2_1 between Satt186 and Satt226 was detected in four environments and explained 3.41%-10.98% of the phenotypic variation. The qGTA2_1, overlapped with qGCA2_1 and detected in four environments, was close to the previously identified major QTL for GT, which were responsible for large a effects. QTL (qDZF_2, qGTF_1 and qTIF_2) between Satt144-Satt569 were either clustered or pleiotropic. The qGCM_1, qGTM_1 and qTIM_1 between Satt540-Sat_244 explained 2.02%–9.12% of the phenotypic variation over six environments. Moreover, the qGCE_1 overlapped with qGTE_1 and qTIE_1, the qTIH_2 overlapped with qGTH_1, qGCI_1 overlapped with qDZI_1, qTIL_1 overlapped with qGTL_1, and qTIO_1 overlapped with qGTO_1. In this study, some of unstable QTL were detected in different environments, which were due to weak expression of QTL, QTL by environment interaction in the opposite direction to a effects, and/or epistasis. The markers identified in multi-environments in this study could be applied in the selection of soybean cultivars for higher isoflavone content and in the map-based gene cloning.
BMC Genomics | 2017
Xue Zhao; Weili Teng; Yinghui Li; Dongyuan Liu; Guanglu Cao; Dongmei Li; Li-Juan Qiu; Hongkun Zheng; Yingpeng Han; Wenbin Li
BackgroundSoybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans.ResultsA total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance.ConclusionsA total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.
Canadian Journal of Plant Science | 2017
Yingpeng Han; Yongyan Zhang; Depeng Wu; Xue Zhao; Weili Teng; Dongmei Li; Wenbin Li
Abstract: The objective of this study was to identify quantitative trait loci (QTL) related to phytophthora root rot (PRR) tolerance and to analyze their genetic effects through two recombinant inbred line populations between tolerance cultivar Hefeng 25 and two susceptible cultivars (Dongnong 93046 for the HD population, including 140 F5:9 lines, and Maple Arrow for the HM population, including 149 F5:10 lines) based on greenhouse evaluation of PRR. A total of five and seven QTL underlying tolerance to PRR were identified in the HD and HM populations, respectively. Phenotypic variation explained by the QTL ranged from 1.27% to 10.41% in the HD population and from 1.68% to 12.65% in the HM population. Of these QTL, three (qHDPRR-4 in the HD population and qHMPRR-1 and qHMPRR-3 in the HM population) were identified in similar genomic regions reported previously. Nine new QTL contributed by Hefeng 25 were found in the present study (four in the HD population and five in the HM population). Three QTL in the HD and five QTL in the HM populations had higher additive effects that were likely to be stable across multiple environments or genetic backgrounds. Moreover, four and five epistatic pairwise QTL were found to underlie tolerance to PRR in the HD and HM populations, respectively.
Plant Journal | 2015
Xue Zhao; Yingpeng Han; Yinghui Li; Dongyuan Liu; Mingming Sun; Yue Zhao; Chunmei Lv; Dongmei Li; Zhijiang Yang; Long Huang; Weili Teng; Li-Juan Qiu; Hongkun Zheng; Wenbin Li
Theoretical and Applied Genetics | 2012
Yingpeng Han; Dongmei Li; Dan Zhu; Haiyan Li; Xiuping Li; Weili Teng; Wenbin Li
BMC Genomics | 2015
Yingpeng Han; Xue Zhao; Guanglu Cao; Yan Wang; Yinghui Li; Dongyuan Liu; Weili Teng; Zhiwu Zhang; Dongmei Li; Li-Juan Qiu; Hongkun Zheng; Wenbin Li
Plant Breeding | 2015
Yingpeng Han; Weili Teng; Yan Wang; Xue Zhao; Lin Wu; Dongmei Li; Wenbin Li
Plant Breeding | 2016
Haiyan Li; Yan Wang; Yingpeng Han; Weili Teng; Xue Zhao; Yongguang Li; Wenbin Li
Plant Breeding | 2015
Guiyun Zhao; Zhenfeng Jiang; Dongmei Li; Yingpeng Han; Haibo Hu; Lin Wu; Yan Wang; Yuan Gao; Weili Teng; Yongguang Li; Guoliang Zeng; Fanli Meng; Wenbin Li